
iCC 2020 CAN in Automation

73

New	test	concept	for	improving	CANopen	device	quality
Meeting the demand for plug and play functionality without restriction

Mark Schwager, Vector Informatik

Naturally, every CANopen device should pass
the conformance test provided by the CiA User
Organization (CAN in Automation) before it
is released. The conformance test serves to
ensure basic CANopen functionality by running
through typical communication processes
which must be possible according to the
device description file. This includes several
request-response scenarios for testing of the
proper transmission and reception of process
data objects (PDOs) and service data objects
(SDOs) according to the standard, the testing
of network management functions and so on.

The existence of a device description file,
the so-called electronic data sheet (EDS) for
each CANopen device is a crucial element of
the plug and play functionality of CANopen.
The object directory of the device description
file uses an index and sub-index to precisely
document which objects are available, their
locations/addresses, the objects which
other devices may read and whether they
are write-protected or intended for data
exchange via PDO. The conformance test
also checks whether the specifications in
the device description file match those of the
actual device – at least to the greatest extent
possible.

Test	script	maintenance:	punishment	for	
employees?

The conformance test cannot and is not
intended to test actual device functions and
root out complex problems which can arise

In	many	applications	ranging	from	the	utility	vehicle,	industrial	and	building	technology	
fields	 to	 the	 medical	 field,	 automation	 components	 work	 together	 based	 on	 the	
CANopen	 standard.	 It	 should	 be	 easy	 to	 couple	 sensors,	 actuators,	 operating	 units	
and	controllers	to	one	another	according	to	the	plug	and	play	principle.	To	meet	this	
demand,	significant	testing	effort	 is	required	on	the	part	of	the	manufacturer,	as	is	a	
proper	device	description	file.	This	article	presents	a	new	approach	to	testing	where	the	
virtualization	of	CANopen	devices,	a	clever	abstraction	principle	and	test	automation	
play	a	central	role.	The	concept	reduces	the	time	and	effort	required	for	testing	while	
also	ensuring	both	a	greater	depth	of	testing	and	quality	of	CANopen	devices.

when integrating the application with the
CANopen stack into the device firmware.
Rather, it is the job of every manufacturer
to ensure that their CANopen devices
provide the level of performance required by
users according to the EDS file. For testing,
developers frequently create manual test
scripts with which the developments are to
prove their production readiness. As is well
known, each new software version must be
subjected to the full gamut of tests (referred
to as regression tests, among other things)
during the development process. Should
entries and addresses in the object directory
have changed, for example, the test scripts
must be adjusted accordingly each time. This
type of work is tedious, disliked and willingly
neglected, with only the most necessary tests
being carried out at times. Oftentimes, the
hope that everything will just be okay prevails.
This is in contrast to systematic testing.

Application test operation reveals hidden flaws
In light of this and similar situations, the
question of how CANopen devices can
be tested efficiently and systematically
arises. Initially, it is desirable to not only test
devices in stand-alone operation, but under
realistic operating conditions with other bus
subscribers as well – that is, in the application
together with corresponding receivers. The
manufacturer of a CANopen rotary encoder,
for example, specifically requires devices
which poll the data generated by the encoder
in all different ways. This could be the direction
of rotation and the angular velocity, in addition

iCC 2020 CAN in Automation

74

to the absolute position. At the same time,
other participants communicate on the bus to
simulate a certain level of utilization.

You can certainly buy a bunch of
suitable CANopen devices from different
manufacturers on the market and connect
them together within a test network for this
purpose. However, this will quickly become an
expensive undertaking, and handling a large
number of physical devices is inflexible and
time-consuming as well. A much more elegant
and cost-effective solution seems to be the
concept of not having to acquire other physical
devices, but simulating them using appropriate
software instead. The requirements for this
are ideal, as device description files are
available in virtually unlimited variety. They
can usually be downloaded from the website
of the respective manufacturer.

EDS	files	provide	data	for	virtual	
CANopen	nodes

A generator for virtual CANopen devices
now reads in the available device description
files and creates virtual counterparts from
them. It creates a corresponding variable
in the virtualization software – which runs
on a Windows PC – for each entry in
the object directory. This PC is equipped
with interface hardware for CANopen for
communication with the system under test
and any other physical CANopen devices if
applicable. Accordingly, the test arrangement
is comprised of one physical and one virtual
bus branch, which opens up very interesting
testing and simulation options. The virtual
CANopen nodes represent a precise map of
the device description file and largely behave
like their physical counterparts. Once there is
a representation in the simulation model for all
objects in the description files, read and write
access is tailored to the simulated nodes in a
similar way to the objects of real devices.

It also makes sense to create a virtual map in
the simulation for the device to be checked.
A test script is then able to access mirror
memory relatively quickly. At the same time,
the system handles updating of the object
directory in the physical test hardware during
write access. The mirror memory noticeably
simplifies the writing of test scripts, as it

enables the equal treatment of physical and
virtual devices during write and read access.
The test programmer does not need to think
about whether they are currently writing code
for a physical or virtual device every single
time. This whole arrangement serves to
simulate realistic operating situations with any
desired amount of additional bus traffic and
creates a flexible testing environment which
can be quickly adapted to changing tasks.

Working	with	plain-text	names	instead	of	
cryptic	HEX	values

With the intention of simplifying work for the
test engineer even further, the demonstrated
test concept also provides for the consistent
use of plain-text names when accessing
CANopen objects. People in charge of the task
thus no longer need to remember countless
indices and sub-indices, but simply ask about
the “encoder position” when formulating a
request, for example. Here, the system uses
precisely that plain-text name found in the
device description file in addition to the data
type and access rights etc.

As multiple identical encoders can be used,
and to also enable the operation of multiple
parallel CANopen buses – something quite
common in physical applications – we
recommend using universally unambiguous
namespaces. This can be implemented with
a suitable designation hierarchy, which is
placed ahead of the plain-text name. The
structure of a variable designation then looks
as follows: the keyword CANopen is followed
by the network name, then the device name
and finally the plain-text parameter name from
the object directory. This prevents naming
conflicts of any type from occurring.

Carrying	out	(regression)	tests	without	
modifying	code

Abstraction of the object index comes along
with major advantages with regard to changes
in the object directory. Over the course of the
development of a CANopen device, the object
indices can move, new objects can be added,
and other objects may be omitted from time
to time. Using a servomotor as an example,
the setpoint position might be represented by
object index 2000 today, but could be located

iCC 2020 CAN in Automation

75

at index 2200 tomorrow. What this means for
test code, where the objects are addressed
directly, is obvious: all parts of the test program
which point to modified object indices must be
manually identified and updated. Not so with
plain-text names. In the program code of the
test, it’s no longer “write value XY to object
2000,” but “write value XY to motor setpoint
position” instead. The simulation software
need only read in the new device description
file. In this way, the test programs written
once in accordance with the plain-text naming
convention can be executed unchanged as
many times as desired with no adjustments
to the code following each modification of the
device firmware.

Get	there	faster	with	test	automation

In addition to virtual CANopen devices and
the use of plain-text names, test automation
forms what is essentially the third column of
the concept for efficient testing of CANopen
developments. Long-term tests, for example,
are hardly feasible and can run for months
without test automation. Quite a number
of CANopen devices are used in safety-
critical applications like medical technology
and the energy sector. The development
and marketing of these types of devices is
unimaginable without corresponding long-
term tests, often even in conjunction with
climate exposure test cabinets for the purpose
of artificial aging.

Each testing department fundamentally
benefits from flexible test automation. The
time-saving effect is enormous and opens
up testing possibilities which would not be
feasible otherwise. This is why a testing
system with test automation which can be
scaled to suit increasing requirements is
preferable. Initially, you may only want to run
through the same test many times, changing
configurations and boundary conditions
and creating intermediate reports each time
automatically with each execution. Later on,
several pieces of test hardware will have to
prove their production readiness in complex
simulation models with many virtual CANopen
devices and CANopen buses at the same
time. Ideally, the test framework can also be
enhanced with hardware modules providing
analog and digital I/O signals as well. Voltages,

currents and signal characteristics can be
generated, which serve to stimulate CANopen
sensors. Suitable relay cards can switch
supply voltages on and off under the control of
scripts, create artificial short-circuits, connect
interference voltages and lots more. There’s
almost no limit to the tester’s imagination.

Conclusion

Supplying the customer with top-quality, fault-
free CANopen devices should be the top
priority of every manufacturer. The test concept
demonstrated here facilitates work when
testing CANopen developments, saves time
and leads to a significantly greater depth of
testing. CANopen devices can be realistically
tested in an application, test programs can be
reused many times without code modifications
and complex test scenarios can be run through.
By connecting modularly designed digital and
analog I/O cards, switching relays and other
hardware modules, a fully automated testing
environment can be provided.

Mark Schwager
Vector Informatik GmbH
Holderäckerstr. 36
DE-70499 Stuttgart
www.vector.com

