
iCC 2020 CAN in Automation

61

CRC	Error	Detection	for	CAN	XL

Dr. Christian Senger, Institute of Telecommunications, University of Stuttgart

I.	Introduction

A new version of the CAN (Controller 
Area Network) protocol is currently under 
development: CAN XL. With net data rates 
up to 10 Mbit/s and beyond, it is designed to
bridge the gap between CAN FD and 
100Base-T1 Ethernet [1]. Among the design 
goals for CAN XL are full interoperability 
with CAN FD as well as large payload 
length (up to 2048 byte) in order to enable 
the use of higher layer protocols such as IP 
(Internet Protocol) and even encapsulation 
of complete Ethernet frames [2].
As in any communications system, data 
transmission in CAN XL is not perfect and 
transmission errors are inevitable. That is, 
a transmitted logical zero is detected at the 
receiver as a logical one or vice versa — a 
so-called bit error or bit flip. Due to certain 
physical perturbances in an actual system, 
bit errors tend to occur in temporally confined 
groups: so-called burst errors.
Based on elaborate mechanisms that 
exploit the CAN FD/CAN XL frame structure 
(cf. Section IV), certain transmission 
errors can be detected [3], [4] and 
corresponding measures can be taken. 
Frame structure-based error detection 
alone is not able to provide the required 
state of the art error detection performance 

In	this	paper,	CRC	generator	polynomials	for	detection	of	transmission	errors	in	headers	
and	frames	of	the	upcoming	CAN	XL	standard	are	proposed.	Their	properties,	which	are	
chosen	such	as	to	provide	state	of	the	art	error	detection	performance	(compared	to	
competing	standards)	in	the	CAN	XL	scenario,	are	described.	These	properties	include
achieving	Hamming	distance	six	for	the	full	range	of	possible	message	lengths.	At	the	
beginning	of	the	paper,	a	self-contained	recap	of	CRC	codes	is	given.

for today’s applications, namely probability 
of undetected bit error below 10-20 and 
guarantee to detect burst errors of a certain 
length.
Thus, in order to provide the required 
error detection performance, CRC (Cyclic 
Redundancy Check*) codes are employed 
(cf. Section II). Competing standards such 
as Flexray and Ethernet also use CRC 
codes for error detection and it is our goal 
to provide at least the same or (ideally) 
better error detection performance for  
CAN XL. This can be accomplished by 
choosing particular CRC codes, which is 
(along a selfcontained description of CRC 
codes and some of their properties) the 
main contribution of this paper (cf. Sections 
V and VI).
CRC Codes We restrict ourselves to  
codes over the binary field , i.e., codes 
over the set {0,1} with operators + (XOR)  
and · (AND). We denote the set of 
polynomials of indeterminate  over  as

. For some  from 
we denote the largest  where 

 the degree of . 
In general, the purpose of codes is to cope 
with transmission errors. The main idea is to 
add redundancy to a message and transmit 
the resulting codeword. At the receiver, the 
redundancy can then be used to recover 
the transmitted codeword, even if it got 
corrupted during transmission. This is called
error correction. A much simpler task is to 
use the redundancy in order to determine 
whether the transmission was error-free or 
not. This is called error detection and is the 
key objective of this this paper. 

* Note that the term “cyclic” at this point is misleading, 
as many CRC codes used these days do not actually 
fulfill the definition of a cyclic code (cf. textbooks on 
error control coding such as [5]). Today, this naming 
is mainly used for historical reasons. 



iCC 2020 CAN in Automation

62

The message could, for example, be a 
polynomial  of degree at most  
(having at most  nonzero coefficients) 
from . Such a message of message 
length can be augmented by  redundant 
coefficients that are calculated as a function 
of the message. The process of augmenting 
message by redundancy is called encoding, 

 is called the CRC length,  
the code length. The result of encoding is 
referred to as a codeword. Encoding is  
called systematic if in any codeword, 
message and redundancy can be clearly 
separated (such as in the codeword 

consisting of message  in the most 
significant coefficients and redundancy 

 in the least significant coefficients). 
Systematic encoders are preferred in practice 
due to their obvious implementational 
advantages.
One way of encoding messages , 

, into codewords , 
, is to multiply them 

with a fixed generator polynomial 

of degree  from . The set 

   (1) 

of all possible codewords obtainable in 
this way is called the CRC code , where 
we maintain the message length  as 
an index for purposes that will become 
clear in Section III. This canonical way of 
encoding (multiplication of messages with 
the generator polynomial) is not systematic, 
message and redundancy are intertwined 
in the resulting codewords and cannot be 
clearly separated. Due to its definition in (1) 
one could also refer to  as a polynomial 
code. 
Systematic encoding can be achieved as 
follows. Instead of multiplying messages 
with the generator polynomial, the mapping 

            (2)  

is performed. Using this form of encoding, 
the redundancy is the polynomial remainder 
of the division , i.e., the remainder 
of polynomial long division (over ) applied
to message and generator polynomial. 
It is easy to see that the codewords 
obtained this way can be written as

, and thus  
. That is, systematic encoding 

leads to the same code  as canonical 
encoding, only the mapping from messages 
to codewords is different. 
The effect of systematic encoding as 
presented before can easily be described 
in words: codewords are polynomials 
of degree at most , where 
the message is shifted into the k most 
significant coefficients  and 
the redundancy is written into the  least 
significant coefficients . 
The main reason for the popularity of 
polynomial codes as described above is 
the fact that the polynomial remainder of 

 can be calculated using a simple 
linear feedback shift register. In general, the 
register in Figure 1 calculates the polynomial 
remainder of ,  
and stores it (after  clock cycles) in the 
memory elements .
It is clear that the register can be used 
to calculate  as in (2) by setting 

 and  
. Note that  is fed into the 

register starting with its most significant 
coefficient  and that its memory 
elements must be reset to some fixed 
binary vector (called the initialization vector) 
beforehand. After  is fed into the register 
it holds . 
Besides calculating  as required for 
systematic encoding, the same register can 
also be used to determine whether a given 
polynomial , is a 
codeword. 
In case it is a codeword, it has to be 
a polynomial multiple of the generator 
polynomial  as stated in (1). But this 
implies that  divides  and thus 

 has to hold if the  
register is fed with  
and . Otherwise 
(if at least one out of the  is nonzero 
after   clock cycles),  cannot be 
a codeword. It is important to note that the  



iCC 2020 CAN in Automation

63

 

memory elements must be reset to the 
same initialization vector as used for 
encoding in the previous paragraph before 
the  are fed into the register. 
We stress that in case  is indeed a 
codeword, we have ,  

, where  
mi and  are the coefficients of message 

 and redundancy , respectively. 
In practice, CRC codes are used as follows: 
First, generator polynomial  and 
initialization vector are chosen as system 
parameters and made known to both 
transmitter and receiver. Each message 

 is encoded into a codeword  
at the transmitter (systematically as in (2), 
using the linear feedback shift register from 
Figure 1 in order to calculate the redundancy 

). 
The codeword is transmitted over a 
communications channel where it may be 
exposed to bit and burst errors. As a result, 
the received word at the receiver  may 
not be identical to . The receiver now 
uses the register (configured with  and 
the initialization vector) in order to check 
whether  is a codeword or not. If it is 
not a codeword then a transmission error 
is detected and appropriate measures are 
taken. 
If it actually is a codeword then two cases 
are possible: Either  coincides with 

, which means errorfree transmission. 
Otherwise, if it does not coincide with ,  
the channel transformed  into another  

codeword from . The receiver has no way 
of distinguishing between the two cases 
and thus the latter case corresponds to 
an undetected error. Since the probability 
of having undetected errors depends on 
the actual generator polynomial, choosing 
generator polynomials that result in 
low undetected error rate is of utmost 
importance.

III.	Properties	of	CRC	Codes

As we will see in the following, the undetected 
error rate is mainly determined by a code 
parameter referred to as minimum Hamming 
distance or, in the context of CRC codes, 
simply Hamming distance . It states 
the minimum number of coefficients, in 
which any two codewords  ,  

 differ. 
In our setting (since the considered 
polynomial codes are linear),  is defined 
by the minimum Hamming weight of the 
codewords from , i.e., 

The Hamming weight wt[] of a polynomial 
p(x) 2 F2[x] is in turn defined as the number 
of its nonzero coefficients, i.e., 

Since the CRC length M is fixed (by the 
choice of generator polynomial) the code 
rate  approaches one as the 
message length  grows. Consequently, 

Figure 1: Linear feedback shift register for use with polynomial codes. All operators are from  
, i.e., + denotes an XOR operation, bi surrounded by a circle denotes an AND operation with  

bi as one of the operands.



iCC 2020 CAN in Automation

64

larger  results in a denser packing of the 
linear code space and thus (in general) in 
smaller Hamming distance. Since CAN XL 
(both header and frame) generates a range 
of message lengths we have to carry  
along as an index for both  and . 
Transmission errors can be represented by 
nontrivial error polynomials 

with  that distort 
transmitted codewords  into 
received polynomials 

In order to cause an undetected error, the 
channel has to cause at least  nonzero 
coefficients in , i.e., it has to cause 

 bit errors. It is not possible 
to take the transmitted  to a different 
codeword with a smaller number of bit  
errors and thus transmission errors with 

 <  bit errors can always be 
detected. Consequently, larger Hamming 
distances result in smaller undetected 
error rates, which is why we always aim for  
large Hamming distance in the rest of the 
paper.

A.	Undetected	Error	Rate

The undetected error rate states the 
probability that transmission of a codeword 

 results in received word  
 and . It can be 

calculated explicitly under the assumption 
(suggested in [6]) that the transmission 
channel is a binary symmetric channel 
(BSC) that flips each transmitted bit 
with crossover probability . Besides 
this assumption, the weigt distribution 

 of  is required.  
Its components ,  
give the number of codewords in  
having Hamming weight . Despite being 
computationally not trivial it is still possible to 
calculate weight distributions for moderately 
sized polynomial codes. 
Under the given assumptions, the undetected 
error rate of a code can be calculated as 

Since we assume a BSC it is  
times less likely to have  
compared to having . This 
fraction goes to infinity as  and thus 

 is dominated by its first term, that is,  

As a consequence, our criterion for picking 
generator polynomials for the header 
CRC in Section V from multiple candidate 
polynomials with the same  is going 
to be small  for the full range of 
relevant message lengths .

B.	Guaranteed-Detectable	Errors

Some transmission errors can be detected 
with guarantee. Take for example a 
code  with . Any two distinct 
codewords  differ in at least  
6 coefficients. That is, taking  and  
flipping at most 5 arbitrary coefficients 
cannot result in some . Or, in 
other words: 

This shows that, in any case, up to  
bit errors can be detected with guarantee. 
Many transmission errors with much larger 
Hamming weight can be detected as well 
but this can in general not be guaranteed. 
An exception (where there actually are 
guarantees) are burst errors of a certain 
maximal length as we will see in the 
following. 
For any transmission error 

, we define 
the following two notions: The trailing 
coefficient 

and the leading coefficient 

The value  
is referred to as the burst-length of the error. 
In general, detecting errors is easier if their 
Hamming weight and their burst-length are
small.
If any  is a codeword then (by 
definition) it has to be a polynomial multiple 



iCC 2020 CAN in Automation

65

of . That is,  for some 
. But this implies 

and thus 

As a result, e(x) cannot be a codeword if 
 and con-

sequently any transmission error can be 
detected as long as its burst-length is at most 

.
In order to guarantee detection of preferably 
long burst errors it is instrumental to choose 

 with  resulting in , 
which (with the above) guarantees detection 
of error bursts up to burst-length .
Generator polynomials from  having the 
special form 
                         , where                                ,
impose the factor  on any codeword 

, i.e., any codeword can 
be written as  with 

. For any such 
codeword holds  because in  
we have 1 + 1 = 0 (XOR operation). But the 
evaluation at 1 of any polynomial from  
results in 1 if its Hamming weight is odd and 
in 0 if the Hamming weight is even. This 
lets us conclude that all codewords from the 
resulting CRC code have even Hamming 
weight and consequently a received word  
of odd Hamming can never be a codeword. 
In other words: if the generator polynomial 

 has x + 1 as a factor then all trans- 
mission errors  affected by an odd  
number of bit flips are detected with guarantee. 
In summary we can list types of nontrivial  
transmission errors ,  
that are guaranteeddetectable by CRC codes 
with certain generator polynomials :
(i) In any case:  is guaranteed- 
 detectable as long as .
(ii) If  is guaranteed-detectable  
 as long as it contains a single burst error  
 of burst-length at most .
(iii) If  has  as a factor:  is  
 guaranteed-detectable as long as  
  is odd.

IV:	CAN	XL	Frame	Structure

CAN XL frames consist of a multitude of 
fields,out of which some are protected by the 
header CRC (HCRC), some by the frame 
CRC (FCRC), and some by both (cf. Sections 
V and VI). Table I provides an overview. Here, 
being protected by a
CRC means being included in its message 
polynomials.
It can be seen in the table that besides the 
obvious data field also the header fields ID, 
RRS, PT, DLC, SBC as well as the HCRC 
redundancy are part of the FCRC messages. 
This approach, which provides extra protection 
to the header fields at negligible cost, was 
decided as a result of discussions with Dr. 
Arthur Mutter and Florian Hartwich, Robert 
Bosch GmbH. The same approach is taken in 
the Flexray standard.
Some of the fields are affected by dynamic 
bit stuffing after each run of five identical bits, 
namely SOF, ID, RRS, and IDE. The number 
of dynamic stuff bits is stored in the SBC field. 
Note that the last dynamic stuff bit may be 
added after the
IDE field. Fixed stuff bits as well as any fixed-
value fields are not included in any CRC 
calculation.
We emphasize that the dynamic stuff bits are 
protected by the HCRC but not by the FCRC. 
The explanation is given in the following.
Excluding dynamic stuff bits from CRC 
messages (as in Classical CAN) can result in 
an undetectable error caused by two bit flips 
if one bit flip adds and the other removes a 
dynamic stuff condition. This case is described 
in [7]. However, including dynamic stuff bits (as 
in CAN FD) makes the CRC code vulnerable 
to bit insertions and bit drops at dynamic stuff 
conditions as described in [3].†
Therefore, it was decided (as a result of 
discussions with Dr. Arthur Mutter and Florian 
Hartwich, Robert Bosch GmbH)
to include the dynamic stuff bits in the  
the HCRC calculation but to exclude  
them from the FCRC calculation.  
This enables detection of both 
aforementioned types of errors. 

† A special case of this issue can be dealt with by 
using particular initialization vectors for the linear 
feedback shift register.



iCC 2020 CAN in Automation

66

for use in the HCRC. Our arguments are 
described in the following. Note that when 
we talk about header in this context we 
mean HCRC message as given by Table I 
plus HCRC parity. First, we have (as for any 
CRC code with Hamming distance 6): 
(i) Any erroneous header that is affected 
 by no more than 5 bit errors can be  
 detected with guarantee.
Additionally, due to our special choice 
of  (least significant coefficient  

 and factor ) we have:
(ii)  Any erroneous header that is affected a 
single burst error of burst-length no more than 
13 can be detected with guarantee. In other 
words, any received header where the bit flips 
are constrained to a set of 13 consecutive 
bits is guaranteed-detectable.
(iii) Any erroneous header that is affected  
 by an odd number of bit errors can  
 be detected with guarantee.
(iv) The undetected error rates Pue;34,  
  are minimal  
 among all possible candidate  generator
polynomials with properties (i) to (iii).
We stress that many error patterns that 
do not fall into cases (i) to (iii) can also be 
detected, but without guarantee.
For the convenience of the reader we state 

 in three commonly used notations 
(cf. the Appendix):

M ISO Normal Koopman
13 0x39E7 0x19E7 0x1CF3

In order to cope with the aforementioned 
vulnerability to bit insertions and bit drops 

field	name field	size	[bit] dynamic	
bit stuffing

part of
HCRC

message
comment

SOF
ID
RRS
IDE

1
11
1
1

y
y
y
y

n
y
y
n

n
y
y
n

start of frame, fixed to 0
unique identifier
remote request substitution
identifier extension, fixed to 0

dynamic stuff bits 0-3 y y n positions according to dynamic bit stuffing rule

FDF
XLF
resXL
ADS
PT
DLC
SBC
HCRC

1
1
1
3
8
11
3
13

n
n
n
n
n
n
n
n

n
n
n
n
y
y
y
n

n
n
n
y
y
y
y
y

flexible data rate format, fixed to 1
fixed to 1
fixed to 0
fixed pattern
payload type
payload length (in byte)
dynamic stuff bit count
HCRC redundancy (M = 13)

payload
FCRC

8 to 16384
32

n
n

n
n

y
n

payload data
FCRC redundancy (M = 32)

Table 1: Fields of the CAN XL frame that are protected by either of the two CRCs.

V:	Header	CRC	(HCRC)

As mentioned before, a dedicated header 
CRC is proposed for CAN XL. The same 
approach is followed by the Flexray standard, 
where fixed-length headers are protected 
by an  = 11 bit CRC code that achieves 
Hamming distance 6. The Ethernet standard 
does not stipulate a dedicated header CRC.
The achievable undetected error rates of 
codes with Hamming distance 6 are well 
below 10-20 (calculation based on the weight 
distribution of the codes according to Section 
III). For relevant CAN XL scenarios with data 
rates around 10 Mbit/s this means that less 
than one undetected header error per year 
per billion devices can be expected. Thus, 
going to larger Hamming distance (and thus 
even smaller undetected error rate) seems to 
be over the top. Consequently, the proposed 
generator polynomial for protecting the CAN 
XL header (the HCRC) provides Hamming 
distance 6. 
Due to dynamic bit stuffing, HCRC 
message polynomials consist of at least 
34 and at most 37 coefficients (cf. Table 
I). Thus, any HCRC candidate has to fulfill 

.
It can easily be verified by exhaustive search 
that the smallest CRC length M for which 
candidates fulfilling the HD requirement 
can be found is  = 13. Out of all the 
candidates, we propose the generator 
polynomial 



iCC 2020 CAN in Automation

67

related to dynamic bit stuffing the linear 
feedback shift register must never assume 
the allzero state in the first  clock cycles 
when it is fed with the message (cf. [3]). Here,  

 denotes the number 
of dynamic stuff bits that occur in, in 
between or after the SOF, ID, RRS, and 
IDE fields. Note that 12 bits protected 
by the HCRC (ID and RRS fields) are 
affected by dynamic bit stuffing. The  
all-zero state can be avoided by choosing 
a particular initialization vector such as the 
proposed initialization vector

VI.	Frame	CRC	(FCRC)

Ethernet utilize CRC codes that achieve 
Hamming distance HD = 4 for maximum-
length frames. For minimum-length frames, 
Hamming distance HD = 8 (Flexray) and 
HD = 6 (Ethernet) is achieved. The  = 24 
generator polynomial 0xAEB6E5 (Koopman 
notation) used in Flexray achieves  
HD = 8 only for ultra short payload 
sizes (up to 8 byte) and goes down to  
HD = 6 already at a payload size of  
9 byte. On the other hand, it maintains HD 
= 6 almost up to the maximal payload size 
of 259 byte. It is thus fair to say that the 
Flexray FCRC provides HD = 6 for almost 
all practical payload sizes.
The M = 32 generator polynomial  
0x82608EDB (Koopman notation) used 
in Ethernet performs comparatively bad 
(despite having 8 bit more redundancy): it 
achieves only HD = 5 for very small payload 
sizes and this deteriorates to HD = 4 already 
at a payload size of 372 byte. The complete 
Hamming distance profiles of the Flexray 
and Ethernet polynomials are presented 
in Fig. 2, dotted and dashdotted curve, 
respectively. The figure shows for example 
that the Ethernet polynomial provides good 
Hamming distance for message lengths 
that are shorter than the minimal Ethernet 
payload size.
In order to achieve comparable CRC error 
detection performance as the Flexray and 
Ethernet polynomials, we propose to use 
a generator polynomial that achieves HD 
= 6 throughout the full range of possible 
CAN XL payload sizes, i.e., from 1 to 2048 
byte. This is not possible with the  = 24 
Flexray polynomial and, in fact, it is not 

possible with any generator polynomial with  
 < 31. Thus, in order to provide some 

safety margin, we propose to use a  
generator polynomial with  = 32 for 
the CAN XL FCRC (same CRC length as 
Ethernet).
It follows from Section IV/Table I that  
the FCRC message length varies 
between 34 + 13 + 1 · 8 = 56 and  
34 + 13 + 2048 · 8 = 16431 bit. Thus, 
the task at hand is to find an  = 32 
generator polynomial that achieves 

. Ideally (in order 
to lower the undetected error rate by 
guaranteed detection of long burst errors 
and any odd number of bit errors), the 
polynomial should have  and it should 
be divisible by .
Finding such polynomials is a computationally 
very demanding task. For the case  = 32, 
it has already been
tackled in literature. Reference [8] lists the 

 = 32 generator polynomial 0xFA567D89 
(Koopman notation). The same polynomial 
was already found in [9], but wrongly listed 
as 0x1F6ACFB13 (normal notation), while it 
should have been 0x1F4ACFB13 as pointed 
out by [8].
The Hamming distance profile of the code 
generated by 0xFA567D89 is shown (among 
the Flexray and Ethernet
polynomials) in Figure 2, solid curve. It 
can be clearly seen that the polynomial 
achieves HD = 8 for small payload sizes. 
The Hamming distance goes down to HD = 
6 at message length  = 275 bit, which is 
maintained until the maximal payload size. 
As stated in Section IV, this includes most 
of the header fields as well as the HCRC 
redundancy and thus doubleprotecting these 
fields by the FCRC causes no degradation 
in terms of Hamming distance. 
We stress that 0xFA567D89 never falls 
below one of the Flexray and Ethernet 
polynomials in the full range of possible 
CAN XL payload sizes (it actually also 
outperforms the Ethernet polynomial over 
the full range of possible Ethernet payload 
sizes and also the Flexray polynomial over 
almost the full range of Flexray payload 
sizes).
Using the code generated by 0xFA567D89 
results in the following properties of the 
FCRC: 



iCC 2020 CAN in Automation

68

Figure 2. Hamming distance profiles for the Flexray, Ethernet, and proposed CAN XL FCRC 
generator polynomials. Note that the x-axis is logarithmic and given in byte and thus message 

length is k = 8  x (since k is given in bit)

(i) Any erroneous frame (including all  
 fields marked as “part of FCRC  
 message” in Table I) that is affected  
 by no more than 5 bit errors can be  
 detected with guarantee.
Additionally, due to the fact that 
0xFA567D89 has least significant 
coefficient  and factor   
(see definition of  below) we have:
(ii) Any erroneous frame that is affected  
 by a single burst error of burst-length  
 no more than 32 can be detected with  
 guarantee. In other words, any  
 received header where the bit flips  
 are constrained to a set of 32  
 consecutive bits is guaranteed- 
 detectable.
(iii) Any erroneous header that is affected  
 by an odd number of bit errors can  
 be detected with guarantee. 
We stress once again that many error 
patterns that do not fall into cases (i) to (iii) 
can also be detected, but without guarantee. 
Due to its aforementioned properties we 
propose to use 0xFA567D89 as the FCRC 
generator polynomial, that is, we
propose 

For the convenience of the reader we state 
gFCRC(x) in the three commonly used 
notations (cf. the Appendix):
M ISO Normal Koopman
13 0x1F4ACFB13 0xF4ACFB13 0xF4ACFB13

The initialization vector plays only a minor 
role since dynamic stuff bits are excluded 
from the FCRC. However, defining an 
initialization vector is inevitable and we 
propose to use

VII.	Conclusion	and	Outlook

We presented generator polynomials for 
use in the header and frame CRCs of the 
current CAN XL draft and showed that their 
error correction performance matches or 
outperforms the CRC codes in competing 
standards. Further improvements in the 
undetected error rate could be achieved by 
taking the actual error patterns that occur in 
CAN XL systems into consideration, which 
would require a detailed characterization 
of those patterns for different real-world 
scenarios. So far, our proposal is based on 
the simplifying assumption that the CAN XL 
bus behaves like a (good) binary symmetric 
channel with occasional error bursts. In 
order to improve the detection capabilities 
for burst errors, CRC codes over larger 
alphabets could be taken into consideration.



iCC 2020 CAN in Automation

69

Acknowledgment

The author wants to thank Arthur Mutter and 
Florian Hartwich for fruitful discussions and 
useful comments on the manuscript. 

Dr. Christian Senger
Institute of Telecommunications 
Pfaffenwaldring 47
DE-70569 Stuttgart
www.inue.uni-stuttgart.de

References
[1]  “Standard for Ethernet - Amendment 1: 

Physical Layer Specifications and Management 
Parameters for 100 Mb/s Operation over a Single 
Balanced Twisted Pair Cable (100BASE-T1),” 
ISO/IEC/IEEE 8802- 3:2017/Amd 1:2017(E), pp. 
1–92, March 2018.

[2]   Robert Bosch GmbH. (2019) CAN XL, Next step 
in CAN evolution. [Online]. Available: https://www.
bosch-semiconductors.com/

  news/t-newsdetailpage-4.html
[3]   A. Mutter and F. Hartwich, “Advantages of CAN FD 

error detection mechanisms compared to classical 
CAN,” in In Proceedings of The international CAN 
Conference 2015 (iCC 2015), 2015.

[4]   A. Mutter, “CAN XL error detection capabilities,” 
in In Proceedings of The international CAN 
Conference 2020 (iCC 2020), 2020.

[5]   F. MacWilliams and N. Sloane, The Theory of 
Error-Correcting Codes, 2nd ed. North-Holland 
Publishing Company, 1978.

[6]   J. Charzinski, “Performance of the Error Detection 
Mechanisms in CAN,” in Proceedings of the 1st 
International CAN Conference, September 1994, 
pp. 1/20–1/29.

[7]   J. Unruh, H.-J. Mathony, and K.-H. Kaiser, “Error 
detection analysis of automotive communication 
protocols,” SAE Transactions, vol. 99, pp. 976–
985, 1990.

[8]   P. Koopman, “32-bit cyclic redundancy codes for 
internet applications,” in Proceedings International 
Conference on Dependable Systems and 
Networks, 6 2002, pp. 459–468, doi: 10.1109/
DSN.2002.1028931.

[9]  G. Castagnoli, S. Brauer, and M. Herrmann, 
“Optimization of cyclic redundancy-check codes 
with 24 and 32 parity bits,” IEEE Transactions 
on Communications, vol. 41, no. 6, pp. 883–892, 
June 1993, doi: 10.1109/26.231911.

[10]  “Data link layer and physical signalling,” ISO 11898-
1:2015, pp. 1–65, December 2015. 

Appendix

Generator polynomials are frequently 
represented as hexadecimal numbers in 
order to save space. One way to do that 
is used in ISO 11898 [10] and works as 
follows: write the coefficient vector of the 
polynomial with most significant bit (MSB) 
first, pad it on the left with zeros to length ,  
where , and then interpret 
each block of four bits by the corresponding 
hexadecimal number (again MSB left). This is 
called the ISO notation. in which, for example, 
the generator polynomial 

having coefficient vector

and , is represented by 

For the first alternative notation, write the 
coefficient vector with MSB first, pad it on 
the left with zeros to length , replace the 
leftmost nonzero bit (i.e., ) by a zero 
and then interpret each block of four by the 
corresponding hexadecimal number. This 
is called the normal notation in which, for 
example,  as above is represented by 

Another alternative representation (popu-
larized by Koopman [8]) can be obtained for 

 that fulfill the  property (such 
as the polynomials proposed in Sections 
V and VI): write the coefficient vector with 
most significant bit (MSB) first, pad it on the 
left with zeros to length , delete the 
rightmost bit (i.e., ) and then interpret 
each block of four by the corresponding 
hexadecimal number. This is called the 
Koopman notation. In Koopman notation, 

 as above is represented by 

It is straightforward to recover g(x) from 
any of the hexadecimal notations by simply 
reversing the respective process.


