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Introduction

The set of Time Sensitive Networking 
(TSN) Ethernet standards [1] have been 
designed to offer higher bandwidth, yet 
reliable, deterministic-time and low-latency 
communication as required by the evolution 
of automotive and industrial automation 
networks. However, TSN is not expected to 
replace the Controller Area Network (CAN 
bus) [2] in the near future. The large number 
of proven devices with CAN interface  
and CAN-related infrastructure cannot  
be replaced in a short period of time.  
Also, it would be challenging for TSN  
networks to meet the low latency 
characteristics of Time Triggered CAN 
networks, or other characteristics of 
specialized CAN networks. Therefore, CAN 
bus and TSN are expected to co-exist in 
the foreseeable future of automotive and 
industrial networks. 
CAN-to-TSN gateways are essential 
components for the realization of such 
networks. These gateways need to introduce 
very small latency in order to allow for real 
time control from the one network domain to 
the other (e.g. from TSN to CAN). 
This paper presents the architecture of a 
low-latency CAN to TSN gateway designed 
using commercially available silicon IP 
cores. The following sections describe the 
gateway’s hardware architecture, protocol 
translation methods, latency characteristics 
and use-cases.

The	CAN	network	 is	designed	 to	serve	 local	 systems	with	a	 relatively	 small	 number	of	
nodes	and	bitrate.	Transferring	CAN	frames	over	Ethernet	is	an	efficient	way	of	connecting	
multiple	 CAN	 domains	 using	 proven	 and	 cost-effective	 technology.	 The	 set	 of	 Time	
Sensitive	Networking	(TSN)	standards	made	possible	very	low	latency,	low	jitter	and	reliable	
communication	and	enabled	the	use	of	Ethernet	networks	for	real-time	control	applications.	
CAN	and	TSN	Ethernet	endpoints	and	networks	are	expected	to	co-exist	and	cooperate	in	
the	same	systems	in	the	near	future.	The	development	of	such	hybrid-protocol	systems	
requires	gateways	enabling	communication	between	the	CAN	and	Ethernet	domains.	This	
paper	describes	the	architecture	of	a	CAN-to-TSN	gateway	providing	bridging	functionality	
between	CAN/CAN-FD	buses	and	a	TSN	Ethernet	network.

 

Figure 1: CAN-to-TSN Gateway 

Hardware	Architecture

The first wave of TSN Ethernet deployments 
in industrial and automotive systems use 
100Mbps or 1Gbps, while CAN networks 
run up to 10Mbps in the best case (e.g. short 
distance communication between CAN-FD 
nodes). So, it makes sense for a CAN-to-
TSN gateway to allow multiple CAN nodes 
to connect to Ethernet via a common port. 
The presented gateway is able to bridge up 
to seven CAN ports to a single Ethernet port. 

Each CAN port is controlled by Fraunhofer 
IPMS’ CAN controller IP core [3]. This CAN 
controller core supports both CAN 2.0 
and CAN-FD protocols and allows filtering 
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network node. Priority is encoded in Priority 
Code Point (PCP) field in the VLAN tag of 
the Ethernet frame, and the priority can be 
further mapped to a traffic class for traffic 
shaping purposes [7].  
Obviously, a direct, one-to-one mapping of 
the CAN message identifier to addresses and 
priorities of IP traffic is not possible. However, 
a CAN-to-TSN gateway should implement 
such mapping so that addressing different 
nodes in either the CAN or the IP network 
is feasible and priority can be signaled when 
moving from one protocol to the other. 
The gateway described herein, associates 
each CAN port to a specific destination 
and source UDP port; the gateway itself is 
assigned a specific IP address. This way, 
messages from a CAN port are forwarded 
to the destination IP address and UDP port, 
and are marked as coming from the source 
UDP port which are associated with the 
specific CAN port (Figure 2). The destination 
IP address can be chosen to be a Unicast, 
Multicast or Broadcast. The destination 
IP address, source and destination IP 
addresses are independently set at run time 
for each CAN port. 

Figure 2: CAN-to-Ethernet Routing 

 
Figure 3: Ethernet-to-CAN Routing 

Furthermore, each of the seven CAN ports 
is associated with one of the seven traffic 
classes. This allows mapping of any CAN 
identifier to any traffic class, by properly 
setting the acceptance filers of the CAN 
controller attached to each CAN port.    
In the opposite direction the gateway will 
only accept packets addressed to the local 
IP address, and associated them with a 
CAN port based on the destination UDP 
port (Figure 3). The gateway may also 
be programmed to accept broadcast and 
multicast messages.

incoming messages based on the CAN 
identifier, which is typically associated with 
the source of the message and its priority. 
The filtering functionality allows dedicating 
CAN ports to specific CAN message 
identifiers for traffic shaping purposes, as 
discussed later in this paper.   
The Ethernet port is controlled by a 
Fraunhofer IPMS’ TSN Endpoint controller 
core [4]. This TSN controller core integrates 
hardware stacks for timing synchronization 
(IEEE 802.1AS [11]) and TSN traffic shaping 
(IEEE 802.1Qav [10] and 802.1Qbv [9]), 
as well as a low-latency Ethernet MAC. 
Furthermore, the gateway uses CAST’s 
UDPIP hardware stack [12] for encapsulating 
and decapsulating CAN frames into/from  
UDP/IP packets. A block diagram of CAN-
to-TSN gateway is shown in Figure 1.

Address	and	Priority	Translation

Any gateway needs to implement two 
basic functions: a) translate addressing 
information from one protocol to the other, 
and b) convey data from one protocol to the 
other. To the best of author’s knowledge, 
there is no standard specification nor 
recommendation for mapping addresses 
and payloads from Ethernet to CAN and vice 
versa. Therefore, a new, non-standardized 
method was used. 
The widely-used Internet Protocol (IP) [6] 
was the obvious choice for the Ethernet 
side, as it allows easy and cost-effective 
integration. The User Datagram Protocol 
(UDP) [4] was chosen over the Transmission 
Control Protocol (TCP) [5], as low latency is 
of paramount importance for the gateway. It 
is worth noting that the unreliable UDP can 
become absolutely reliable in TSN networks 
as time-aware shaping guarantees packets 
delivery for some or all traffic classes. 
The CAN protocol is designed such that 
every node can receive every message. So, 
there are no explicit source and destination 
address fields in CAN frames, but rather an 
11- or 29-bit identifier that typically encodes 
the type of data, the source of data, and the 
priority of a message.
On the other hand, IP networks use the 
IP address identify a network node, and 
the UDP or TCP port numbers identify 
the source and destination points within a 
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CAN	Frames	Encapsulation

The CAN-to-TSN Gateway encapsulates 
one or more CAN Messages from a CAN 
port as payload of a UDP frame, as shown 
in Figure 4, and expects incoming UDP 
frames to follow the same format. Table 1 
provides short descriptions of the fields of 
the encapsulated CAN frame.  

Figure 4: CAN Frame Encapsulation

With about 60 bytes, the Ethernet/UDP/
IP framing represents a large overhead 
when transferring single CAN frame. To 
improve the Ethernet bandwidth utilization, 
the gateway allows encapsulating multiple 
CAN messages into a single UDP/IP packet. 
However, this grouping of CAN messages 
introduces additional latency in the CAN 
to TSN direction, which may not be always 
acceptable. The gateway allows users 
to trade latency for bandwidth utilization 
per CAN port by using the following two 
parameters:
 ● UDP payload size limit – limits number  
  of CAN frames in the single UDP  
  packet

 ● Transmit timeout limit – limits time till  
  the frame is sent to the network.

Table 1: CAN frame fields

Latency	characterization

Low latency communication has been one  
of main goals in the design of the CAN  
to TSN gateway. To this end a custom 
hardware architecture, using the smallest 
amount of buffering possible has been 
implemented. The end result is that 
ingress (Ethernet to CAN) and egress 
(CAN to Ethernet) latency is less than  
30 μs, excluding any delays related to  
TSN traffic shaping. This is the time  
between the instance a CAN frame has 
been received on a CAN port to the instance 
the same frame has been transmitted to the 
Ethernet port, when CAN message grouping 
is turned off. With message grouping turn 
on, the latency is increased by the time 
takes to receive all CAN messages that 
will be encapsulated as payload in the 
same UDP packet. However, this additional 
latency is under the designer control, via 
the programmable limits of the message 
grouping mechanism (I,e, UDP payload size 
limit and transmit timeout limit), and can be 
even eliminated if needed. 
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Latencies in the order of 30μs or even  
60 μs (which is what it would take for a round 
trip from CAN to Ethernet and back) are 
within the limits even for real-time, closed-
loop control systems that typically require 
reaction times in the order few ms, or few 
tens of ms.   

Using	the	gateway

The CAN to TSN gateway can be used to 
configure, monitor and control the operation 
of CAN endpoint devices organized in 
networks or operating in a standalone basis. 
Recall, that each CAN port of the gateway 
is associated with a specific traffic class 
for traffic shaping purposes. This port to 
traffic class assignment can be changed at 
run time, and gives network designers the 
following options:

 1. Connect all CAN ports of the gateway  
  to the same CAN network, and  
  configure each port to accept  
  messages with a different subset of  
  CAN identifiers, as shown in the  
  example of Figure 5(a). This way CAN  
  message identifiers are directly  
  mapped to traffic classes for TSN  
  traffic shaping. 
 2. Connect each CAN port of the gateway  

 to a different CAN endpoint, as shown  
 in the example of Figure 5(b). This  
 way, TSN traffic classes are associated  
 with endpoints.

 3. Connect some CAN ports to the same  
 CAN network, and some others to a  
 different network or endpoint devices,  
 as shown in the example of Figure  
 5(c). This enables endpoint and CAN  
 networks, and CAN message  
 identifiers within the CAN networks  
 to be associated with different traffic  
 shaping classes.

The highly flexible way of associating TSN 
traffic classes to CAN endpoints, CAN 
networks and CAN message Identifiers, 
is then exploited by the TSN traffic 
shapers of the CAN to TSN gateway, to 
implement reliable, low larceny and low jitter 
communication with the CAN nodes over 
Ethernet. 

 

Figure 5: CAN ports usage examples

On the Ethernet side, the gateway can be 
configured to act as a simple end-point or 
switched end-point. A switched end point 
is suitable for implementing daisy-chained 
networks, such as the ring example of 
Figure 6, while a simple end-point is suitable 
for implementing a star network, as the 
example of Figure 7.  

 

Figure 6: CAN to TSN Gateway Usage 
Example on an Ethernet Ring
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Figure 7: CAN to TSN Gateway Usage 
Example on an Ethernet Star

Conclusions

The architecture of a CAN-to-TSN gateway has 
been presented. The gateway uses proprietary 
UDP encapsulation of CAN messages, and a 
custom hardware implementation of all packet-
processing functions. It introduces a latency 
smaller than 30us in both directions, and 
allows users to develop different traffic shaping 
scenarios by associating CAN identifiers to 
TSN traffic classes and allowing full control over 
TSN traffic shaping parameters. Furthermore, 
the gateway can operate in TSN network using 
either start or ring topologies. Therefore, this 
CAN to TSN gateway can be used to for the 
integration of legacy CAN devices in new TSN 
Ethernet networks, or in the control of local 
CAN networks over a TSN Ethernet backbone. 
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