
iCC 2020 CAN in Automation

129

Designing	a	CAN-to-TSN	Ethernet	gateway

N. D. Zervas, A. Sousek, P. Vrbka, CAST Inc.

Introduction

The set of Time Sensitive Networking
(TSN) Ethernet standards [1] have been
designed to offer higher bandwidth, yet
reliable, deterministic-time and low-latency
communication as required by the evolution
of automotive and industrial automation
networks. However, TSN is not expected to
replace the Controller Area Network (CAN
bus) [2] in the near future. The large number
of proven devices with CAN interface
and CAN-related infrastructure cannot
be replaced in a short period of time.
Also, it would be challenging for TSN
networks to meet the low latency
characteristics of Time Triggered CAN
networks, or other characteristics of
specialized CAN networks. Therefore, CAN
bus and TSN are expected to co-exist in
the foreseeable future of automotive and
industrial networks.
CAN-to-TSN gateways are essential
components for the realization of such
networks. These gateways need to introduce
very small latency in order to allow for real
time control from the one network domain to
the other (e.g. from TSN to CAN).
This paper presents the architecture of a
low-latency CAN to TSN gateway designed
using commercially available silicon IP
cores. The following sections describe the
gateway’s hardware architecture, protocol
translation methods, latency characteristics
and use-cases.

The	CAN	network	 is	designed	 to	serve	 local	 systems	with	a	 relatively	 small	 number	of	
nodes	and	bitrate.	Transferring	CAN	frames	over	Ethernet	is	an	efficient	way	of	connecting	
multiple	 CAN	 domains	 using	 proven	 and	 cost-effective	 technology.	 The	 set	 of	 Time	
Sensitive	Networking	(TSN)	standards	made	possible	very	low	latency,	low	jitter	and	reliable	
communication	and	enabled	the	use	of	Ethernet	networks	for	real-time	control	applications.	
CAN	and	TSN	Ethernet	endpoints	and	networks	are	expected	to	co-exist	and	cooperate	in	
the	same	systems	in	the	near	future.	The	development	of	such	hybrid-protocol	systems	
requires	gateways	enabling	communication	between	the	CAN	and	Ethernet	domains.	This	
paper	describes	the	architecture	of	a	CAN-to-TSN	gateway	providing	bridging	functionality	
between	CAN/CAN-FD	buses	and	a	TSN	Ethernet	network.

Figure 1: CAN-to-TSN Gateway

Hardware	Architecture

The first wave of TSN Ethernet deployments
in industrial and automotive systems use
100Mbps or 1Gbps, while CAN networks
run up to 10Mbps in the best case (e.g. short
distance communication between CAN-FD
nodes). So, it makes sense for a CAN-to-
TSN gateway to allow multiple CAN nodes
to connect to Ethernet via a common port.
The presented gateway is able to bridge up
to seven CAN ports to a single Ethernet port.

Each CAN port is controlled by Fraunhofer
IPMS’ CAN controller IP core [3]. This CAN
controller core supports both CAN 2.0
and CAN-FD protocols and allows filtering

iCC 2020 CAN in Automation

130

network node. Priority is encoded in Priority
Code Point (PCP) field in the VLAN tag of
the Ethernet frame, and the priority can be
further mapped to a traffic class for traffic
shaping purposes [7].
Obviously, a direct, one-to-one mapping of
the CAN message identifier to addresses and
priorities of IP traffic is not possible. However,
a CAN-to-TSN gateway should implement
such mapping so that addressing different
nodes in either the CAN or the IP network
is feasible and priority can be signaled when
moving from one protocol to the other.
The gateway described herein, associates
each CAN port to a specific destination
and source UDP port; the gateway itself is
assigned a specific IP address. This way,
messages from a CAN port are forwarded
to the destination IP address and UDP port,
and are marked as coming from the source
UDP port which are associated with the
specific CAN port (Figure 2). The destination
IP address can be chosen to be a Unicast,
Multicast or Broadcast. The destination
IP address, source and destination IP
addresses are independently set at run time
for each CAN port.

Figure 2: CAN-to-Ethernet Routing

Figure 3: Ethernet-to-CAN Routing

Furthermore, each of the seven CAN ports
is associated with one of the seven traffic
classes. This allows mapping of any CAN
identifier to any traffic class, by properly
setting the acceptance filers of the CAN
controller attached to each CAN port.
In the opposite direction the gateway will
only accept packets addressed to the local
IP address, and associated them with a
CAN port based on the destination UDP
port (Figure 3). The gateway may also
be programmed to accept broadcast and
multicast messages.

incoming messages based on the CAN
identifier, which is typically associated with
the source of the message and its priority.
The filtering functionality allows dedicating
CAN ports to specific CAN message
identifiers for traffic shaping purposes, as
discussed later in this paper.
The Ethernet port is controlled by a
Fraunhofer IPMS’ TSN Endpoint controller
core [4]. This TSN controller core integrates
hardware stacks for timing synchronization
(IEEE 802.1AS [11]) and TSN traffic shaping
(IEEE 802.1Qav [10] and 802.1Qbv [9]),
as well as a low-latency Ethernet MAC.
Furthermore, the gateway uses CAST’s
UDPIP hardware stack [12] for encapsulating
and decapsulating CAN frames into/from
UDP/IP packets. A block diagram of CAN-
to-TSN gateway is shown in Figure 1.

Address	and	Priority	Translation

Any gateway needs to implement two
basic functions: a) translate addressing
information from one protocol to the other,
and b) convey data from one protocol to the
other. To the best of author’s knowledge,
there is no standard specification nor
recommendation for mapping addresses
and payloads from Ethernet to CAN and vice
versa. Therefore, a new, non-standardized
method was used.
The widely-used Internet Protocol (IP) [6]
was the obvious choice for the Ethernet
side, as it allows easy and cost-effective
integration. The User Datagram Protocol
(UDP) [4] was chosen over the Transmission
Control Protocol (TCP) [5], as low latency is
of paramount importance for the gateway. It
is worth noting that the unreliable UDP can
become absolutely reliable in TSN networks
as time-aware shaping guarantees packets
delivery for some or all traffic classes.
The CAN protocol is designed such that
every node can receive every message. So,
there are no explicit source and destination
address fields in CAN frames, but rather an
11- or 29-bit identifier that typically encodes
the type of data, the source of data, and the
priority of a message.
On the other hand, IP networks use the
IP address identify a network node, and
the UDP or TCP port numbers identify
the source and destination points within a

iCC 2020 CAN in Automation

131

CAN	Frames	Encapsulation

The CAN-to-TSN Gateway encapsulates
one or more CAN Messages from a CAN
port as payload of a UDP frame, as shown
in Figure 4, and expects incoming UDP
frames to follow the same format. Table 1
provides short descriptions of the fields of
the encapsulated CAN frame.

Figure 4: CAN Frame Encapsulation

With about 60 bytes, the Ethernet/UDP/
IP framing represents a large overhead
when transferring single CAN frame. To
improve the Ethernet bandwidth utilization,
the gateway allows encapsulating multiple
CAN messages into a single UDP/IP packet.
However, this grouping of CAN messages
introduces additional latency in the CAN
to TSN direction, which may not be always
acceptable. The gateway allows users
to trade latency for bandwidth utilization
per CAN port by using the following two
parameters:
 ● UDP payload size limit – limits number
 of CAN frames in the single UDP
 packet

 ● Transmit timeout limit – limits time till
 the frame is sent to the network.

Table 1: CAN frame fields

Latency	characterization

Low latency communication has been one
of main goals in the design of the CAN
to TSN gateway. To this end a custom
hardware architecture, using the smallest
amount of buffering possible has been
implemented. The end result is that
ingress (Ethernet to CAN) and egress
(CAN to Ethernet) latency is less than
30 μs, excluding any delays related to
TSN traffic shaping. This is the time
between the instance a CAN frame has
been received on a CAN port to the instance
the same frame has been transmitted to the
Ethernet port, when CAN message grouping
is turned off. With message grouping turn
on, the latency is increased by the time
takes to receive all CAN messages that
will be encapsulated as payload in the
same UDP packet. However, this additional
latency is under the designer control, via
the programmable limits of the message
grouping mechanism (I,e, UDP payload size
limit and transmit timeout limit), and can be
even eliminated if needed.

iCC 2020 CAN in Automation

132

Latencies in the order of 30μs or even
60 μs (which is what it would take for a round
trip from CAN to Ethernet and back) are
within the limits even for real-time, closed-
loop control systems that typically require
reaction times in the order few ms, or few
tens of ms.

Using	the	gateway

The CAN to TSN gateway can be used to
configure, monitor and control the operation
of CAN endpoint devices organized in
networks or operating in a standalone basis.
Recall, that each CAN port of the gateway
is associated with a specific traffic class
for traffic shaping purposes. This port to
traffic class assignment can be changed at
run time, and gives network designers the
following options:

 1. Connect all CAN ports of the gateway
 to the same CAN network, and
 configure each port to accept
 messages with a different subset of
 CAN identifiers, as shown in the
 example of Figure 5(a). This way CAN
 message identifiers are directly
 mapped to traffic classes for TSN
 traffic shaping.
 2. Connect each CAN port of the gateway

 to a different CAN endpoint, as shown
 in the example of Figure 5(b). This
 way, TSN traffic classes are associated
 with endpoints.

 3. Connect some CAN ports to the same
 CAN network, and some others to a
 different network or endpoint devices,
 as shown in the example of Figure
 5(c). This enables endpoint and CAN
 networks, and CAN message
 identifiers within the CAN networks
 to be associated with different traffic
 shaping classes.

The highly flexible way of associating TSN
traffic classes to CAN endpoints, CAN
networks and CAN message Identifiers,
is then exploited by the TSN traffic
shapers of the CAN to TSN gateway, to
implement reliable, low larceny and low jitter
communication with the CAN nodes over
Ethernet.

Figure 5: CAN ports usage examples

On the Ethernet side, the gateway can be
configured to act as a simple end-point or
switched end-point. A switched end point
is suitable for implementing daisy-chained
networks, such as the ring example of
Figure 6, while a simple end-point is suitable
for implementing a star network, as the
example of Figure 7.

Figure 6: CAN to TSN Gateway Usage
Example on an Ethernet Ring

iCC 2020 CAN in Automation

133

Figure 7: CAN to TSN Gateway Usage
Example on an Ethernet Star

Conclusions

The architecture of a CAN-to-TSN gateway has
been presented. The gateway uses proprietary
UDP encapsulation of CAN messages, and a
custom hardware implementation of all packet-
processing functions. It introduces a latency
smaller than 30us in both directions, and
allows users to develop different traffic shaping
scenarios by associating CAN identifiers to
TSN traffic classes and allowing full control over
TSN traffic shaping parameters. Furthermore,
the gateway can operate in TSN network using
either start or ring topologies. Therefore, this
CAN to TSN gateway can be used to for the
integration of legacy CAN devices in new TSN
Ethernet networks, or in the control of local
CAN networks over a TSN Ethernet backbone.

Nikos D. Zervas
CAST Inc.
11 Stonewall Court
US-07677 Woodcliff Lake, NJ
www.cast-inc.com

Antonin Sousek
CAST Inc.
Sumavska 15
CZ-60200 Brno
www.cast-inc.com

Pavel Vrbka
CAST Inc.
11 Stonewall Court
US-07677 Woodcliff Lake, NJ
www.cast-inc.com

References
[1] https://1.ieee802.org/tsn
[2] ISO 11898-1.2015, Road vehicles —

Controller area network (CAN) — Part
1: Data link layer and physical signaling,
December 2015.

[3] http://www.cast-inc.com/ip-cores/
interfaces/can-ctrl/index.html

[4] http://www.cast-inc.com/ip-cores/
interfaces/automotive/tsn-ep/index.html

[5] IETF RFC 768, User Datagram Protocol,
28 August 1980

[6] IETF RFC 793, Transmission Control
Protocol, September 1981

[7] IETF RFC 791. Internet Protocol,
September 1981

[8] IEEE Std 802.1Q-2014: IEEE Standard
for Local and metropolitan area networks--
Bridges and Bridged Networks”

[9] IEEE Std 802.1Qbv-2015: IEEE Standard
for Local and Metropolitan Area Networks
— Bridges and Bridged Networks —
Amendment 25: Enhancements for
Scheduled Traffic.

[10] IEEE Std 802.1Qav-2009: IEEE Standard
for Local and Metropolitan Area Networks
— Virtual Bridged Local Area Networks –
Amendment 12: Forwarding and Queueing
Enhancements for Time-Sensitive
Streams, which specifies the Credit Based
Shaper. (It is part of IEEE Std 802.1Q-
2018.)

[11] IEEE Std 802.1AS-2011: Timing and
Synchronization for Time-Sensitive
Applications in Bridged Local Area
Networks

[12] http://www.cast-inc.com/ip-cores/
interfaces/udpip/index.html

