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Using the “Virtual CAN Bus” it is possible to separate the control tasks from other 
bandwidth-consuming tasks by modifying the physical layer i.e. the transceiver 
and the communication network without any impact on the control task.

Virtual CAN FD network

The bandwidth required for pure control tasks is gov-
erned by the dynamics of the machinery to be con-

trolled. CAN is a well-proven network for control tasks in a 
distributed embedded control system. For example in cars, 
it is not well suited for requirements that relate to the se-
curity of messages, transfer of raw data from advanced 
sensors and cameras as well as the re-flashing of ECUs 
(electronic control units) that demand a high bit rate. The 
primary reason for this is that CAN uses a very simple bit 
transfer method and a low bit rate at the arbitration phase.

A solution to this dilemma is the “Virtual CAN Bus” 
where signals to and from ordinary CAN controllers are 
multiplexed by smart transceivers that support one or more 
modern high-speed communication protocols running on 
the same physical layer. In this way, CAN is kept for control 
tasks and continuously the advantages of the newest tech-
nology for bandwidth-hungry tasks are used.

Proposed solution principles

CAN is, in a sense, a unique protocol: The transmitter uses 
100 % of the network bandwidth but the receivers use just 
a fraction of it. The proposed solution takes advantage of 
this peculiarity. It introduces a “Virtual CAN Bus” (VCB), 
executed in a smart transceiver unit “Virtual CAN Convert-
er” (VCC) connected to an ordinary CAN controller. The 
smart VCC transceiver encodes and transmits the CAN in-
formation on a modern high-speed communication. CAN 
signals are transmitted from the CAN controller to the VCC 
transceiver using the TX connection, according to the CAN 
standard. However, the signals are reduced to only dom-
inant edges and the respective bit values (i.e. the only 
things CAN receivers identify), which are then passed to 
the lower layers of the transceiver unit. The communica-
tion in the final system runs on a modern physical layer 
where such reduced CAN bits are multiplexed and modu-
lated. At reception, the encoded CAN dominant edges and 
bit values are received and the receiving VCC transceiver 
restores the CAN bits and signals these to the CAN con-
troller’s RX connection.

By using the VCB, the control task is separated from 
other tasks. The distributed embedded control system can 
be developed using standard CAN controllers and trans-
ceivers in a traditional way with well proven tools. Oth-
er tasks such as encryption, transmitter authentication, 
re-flashing, etc. can be developed by experts in these 
fields and carried out by using other protocols. With mod-
ern technology, the different tasks can run in parallel and 

simultaneously communicate on the same physical layer. 
It is a great advantage to separate the control problems 
from other problems. The control problem can be solved 
once and for all by the control experts and other problems 
by experts in their respective technology fields. Any solu-
tion to problems in those fields can be implemented at a 
later date by modifying the physical layer i.e. the transceiv-
er and communication network without any impact on the 
control task.

CAN background

CAN was designed purposely to fit the needs of a distrib-
uted embedded controller network. The most important 
properties are:
1. No addresses. All nodes receive all CAN frames and  
 determine if the frame should be received or not. 
2. All nodes participate in error handling. No application  
 receives a frame if all nodes have not found it to be  
 correct.
3. Bit-wise arbitration at frame collisions. No frame is  
 lost, and the maximum latency of any frame can be  
 calculated.

These three properties solve some general control 
design problems in an efficient and elegant way. 

 ◆ A first problem is data consistency within a system. All 
nodes shall have the same information at any given 
time. CAN takes care of this.

 ◆ A second problem is a predictable latency time. CAN 
allows the maximum latency time to be calculated, 
even for unscheduled frames. 

 ◆ On top of that, the “No-address” feature makes the 
frames short as only a CAN-Identifier and a value are 
transported during the runtime. The required network 
bandwidth is minimized.

When CAN was developed in the early 80s, it was 
very efficient. It made maximum use of the technology at 
hand. CAN remains an excellent protocol for control sys-
tems. However, new tasks have been assigned to it. The 
first one was flashing of ECUs. The ECU software is contin-
uously growing and using CAN for this purpose proved too 
slow. To remediate this problem, Bosch started in 2011 de-
veloping the CAN FD (CAN with flexible data rate) resulting 
in the ISO 11898-1:2015 standard. With the arrival of CAN 
FD, flashing could be done faster, but more requirements 
were then brought to the table. Fear for the system hack-
ing requires encryption of the data and authentication of 
the transmitter and this creates more message overhead, 
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i.e. longer messages. Another problem is that some safety 
standards require a Hamming Distance of a minimum of 4. 
Initially, CAN was said to have a Hamming Distance of 6, 
but it was later shown that a data bit mistaken for a stuff bit 
and vice versa might result in the same frame length and 
the same CRC (cyclic redundancy check) value, in which 
case the Hamming distance is only 2. This is true also for 
CAN FD and this might disqualify CAN for use in some 
safety critical systems. 

In addition to distribution of control data in an efficient 
and reliable way (solved already by Classical CAN), CAN 
FD should also be capable of:
1. Encryption of messages.
2. Authentication of the message transmitter.
3. Fast file transfer for ECU flashing.

CAN FD does not seem to solve the additional prob-
lems and the Hamming distance issue remains.

The solution

CAN is used for feedback loop controls of systems involv-
ing mass. The bandwidth needed for control tasks is gov-
erned by the dynamics of the controlled items: the lower 
the mass, the higher the bandwidth needed. Most devic-
es with CAN are related to humans. Since we can expect 
these ‘human-related’ devices to remain roughly the same 
size forever, we can safely say that the dynamic require-
ments of the future will be the same as today. Notably, 
many fourth-generation jet fighters are controlled by MIL-
STD-1553 systems running at 1 Mbit/s. Does a car really 
need a faster control system than a high-performance, in-
herently unstable jet fighter? MIL-STD-1553 is less efficient 
than Classical CAN, so we can expect CAN FD to match 
any control demand of the future.

CAN is more than adequate for control tasks. The 
driving force for a higher bandwidth for CAN is instead 
due to non-control issues. We should find a way to run an 
“old-fashioned” CAN system with a low bit rate on a mod-
ern physical layer, multiplexed with another protocol with a 

high bit rate that carries all the other information needed to 
satisfy any requirement on top of the control task. A start-
ing point is an efficient system architecture with features 
given in Figure 2.
Hence, let us:

 ◆ Separate control problems from other problems
 ◆ Use CAN for control tasks
 ◆ For other tasks, use better suited protocols
 ◆ Run multiplexed protocols on the same physical 

medium
This can be achieved by having the transceiver estab-

lishing a “Virtual CAN Bus” (see Figure 3).

The physical layer carries two or more protocols in 
parallel and the transceiver multiplexes/demultiplexes the 
protocols. A “Virtual CAN Converter” in the transceiver 
processes CAN frames in a specific way.

Essential CAN features for a “Virtual CAN 
Converter” 

The Figure 5 shows the construction of a CAN FD bit.

Figure 1: Modern, fourth-generation jet-fighters use  
MIL-STD-1553 at 1 Mbit/s, which is less efficient than  
CAN (Source: Adobe Stock)

Figure 2: An efficient system architecture (Source: Kvaser)

Figure 3: The transceiver establishes a “Virtual CAN Bus” 
(Source: Kvaser)

Figure 4: The respective CAN controller sends/receives 
the TTL signals according to the CAN FD standard 
(Source: Kvaser)

Figure 5: Construction of a CAN FD bit (Source: Kvaser)
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According to the ISO 11898-1:2015, a CAN FD bit is 
constructed on time quanta. A time quantum (TQ) repre-
sents a number of clock cycles. A bit starts with a Sync_
Seg of one TQ followed by a Prop_Seg, a Phase_Seg 1,  
and a Phase_Seg 2. The value of the bit is sampled at 
the sample point located between Phase_Seg 1 and 
Phase_Seg 2. The signal on the bus lines is the amplitude  
modulated in the simplest way: A zero is voltage, a one is 
no voltage. A CAN transceiver balances the outputs CAN 
high (CAN_H) and CAN low (CAN_L) around 2,5 V (see 
Figure 6).

At the sample point, the bit value is decided by  
the differential voltage between CAN_H and CAN_L (see  
Figure 7).

A unique characteristic of CAN is that the transmitter 
occupies 100 % of the network bandwidth when transmit-
ting but the receiver only a fraction of it at reception. The 
receiver only looks for flanks from an idle bus (recessive 
state, continuous value of 1) to dominant value (0), denoted 
as a dominant edge, where it makes a hard synchroniza-
tion of the bit clock. If it samples the zero level at the sam-
pling point, it regards the signal as a “start of frame” (SOF) 
and continues to look for dominant edges (where it resyn-
chronizes its bit counter) and samples the bit value at each 
sample point. Any other signal is ignored. Thus, the re-
ceiver only uses two or three time quanta of every received 
bit. CAN uses a non-return-to-zero (NRZ) coding so con-
secutive bits of the same value are demodulated by dead 
reckoning of the sample points. Stuff bits with the opposite 
value are inserted when five bits of the value are transmit-
ted in order to keep the bit clocks synchronized.

Reduced CAN Protocol (RCP)

Implemented in the “Virtual CAN Converter” is a “Reduced 
CAN Protocol” (RCP) that creates dominant edges at each 
Sync_Seg and the bit value at each sample point. This 
would take only one TQ for the Sync_Seg and two for the 
bit value. According to the CAN standard, a stuff bit of the 
opposite value should be transmitted after five consecutive 
bits of the same value. As described earlier, this causes 
some problems with the Hamming Distance. The “Virtu-
al CAN Converter” could modulate the stuff bits and send 
an error frame if a stuff bit is detected in the wrong place.

The RCP also generates a dominant edge at the end 
of every bit, i.e. a “Ghost Sync_Seg” (see Figure 8 and Fig-
ure 9) at each bit instance where the CAN controller is not 
generating a recessive bit followed by a dominant bit (1/0). 
This keeps the CAN controller in synchronization with the 
VCC.

According to the CAN protocol, Phase_Seg 2 should 
be no shorter than two TQ. Being so, the VCC can make 
a recessive TQ at the Phase_Seg 2 of a dominant bit and 
we have a dominant edge at every bit. However, the CAN 
controller ignores any dominant edge after sampling a 
dominant value, so such an edge will not cause a resyn-
chronization. A worst-case scenario would then be six bits 
before the CAN controller resynchronizes (five consecutive 
0 values and a stuff bit).

The VCC will receive full bits from the CAN control-
ler but can reduce these to edges and bit-value signals at  
the sample points. The generation of “Ghost edges”  
after dominant bits could be of value to the “Protocol  
Multiplexer” (PMUX) but if not, this VCC feature can be 
omitted.

Figure 6: A CAN transceiver balances the outputs CAN 
high (CAN_H) and CAN low (CAN_L) around 2,5 V 
(Source: Kvaser)

Figure 7: The bit value is decided by the differential volt-
age between CAN_H and CAN_L (Source: Kvaser)

Figure 8: Reduced CAN Protocol principle (Source: 
Kvaser)

Figure 9: Injection of “Ghost edges” (Source: Kvaser)
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When the CAN controller transmits, the VCC receives 
full bits, i.e. differential voltage shifts when two consecu-
tive bits have a different value, from the TX line of the CAN 
controller. The VCC creates at least a Sync_Seg and a bit 
value at the sample point at the respective bit and feeds 
them back to the RX line.

The information from the VCC to the “Protocol Multi-
plexer” can be further reduced. Already at the Sync_seg of 
bits from the CAN controller, the VCC knows the value of 
the bit. By applying some of the CAN specification rules, it 
can also know if it is a start of frame, any of the fixed val-
ue bits, end of frame (etc.) and add this information to the 
“Protocol Multiplexer” by a modulated signal. This can be 
done in a fraction of the CAN bit time.

The length of a CAN frame can be very important. It is 
therefore an advantage if the VCC in communication with 
the “Protocol Multiplexer” generates an encoded SOF bit 
at the beginning of a frame and an encoded EOF bit at the 
end of the frame. The RCP should then be capable of gen-
erating three specific encoded bits: SOF, EOF, and stuff 
bits. The encoding can be done in many ways, e.g. by am-
plitude modulation or phase modulation.

Figure 10: The VCC receives the full bits from the CAN 
controller on the TX line but transmits back only dominant 
edges and the bit values at the sampling point on the RX 
line (Source: Kvaser)

Figure 11: The VCC transmits only encoded Sync-Segs to 
the PMUX (Source: Kvaser)

Figure 12: CAN bit modulation (Source: Kvaser)

The TQ on the CAN controller side can be different 
(longer) from the PMUX side (shorter), as the CAN control-
ler side is limited by old technology but the PMUX can use 
modern and faster technology. Each Sync_Seg signal at 
the CAN controller side can be modulated on the PMUX 
side to immediately also carry the bit value. As the con-
nection between the CAN controller and the VCC is a short 
point-to-point connection, the risk of disturbances is very 
low and the signal quality can be constantly supervised 
and acted upon. 

Protocol multiplexing 

The basis for the protocol multiplexing is the CAN frame 
generated by the RCP at the VCC. Such a frame is initiat-
ed either by the CAN controller or the “Protocol Multiplex-
er”. It is essential that the timing of the RCP signals is kept 
by and through the “Protocol Multiplexer” and the “Signal 
Processing Units”, so the VCCs can accurately create the 
“Virtual CAN Bus”. A CAN frame (see Figure 13) starts with 
the dominant SOF bit followed by the CAN-Identifier field 
and one more bit (RTR bit in Classical CAN and RRS bit in 
CAN FD). These bits can be sent simultaneously from two 
or more CAN controllers. The ACK bit is sent from all re-
ceiving CAN controllers.

This can cause some difficulties for the “Protocol 
Multiplexer” and the RCP. When a bit value is received 
when more than one CAN controller is transmitting, the bit 
value can appear anywhere in the Prop_Seg of the CAN 
bit. The RCP has to catch it and transmit it to the CAN 
controller at the sample point. There are (at least) two ways 
to solve the problem:
1. The bit value is sent continuously on the communication  
 in the part of the CAN frame where multi-transmissions  
 are allowed. Any second protocol signal is blocked.
2. The CAN bit values and dominant edges are modulated  
 in a way that they can be filtered out at the right time and  
 position of the CAN frame.

Bit embedding

The CAN controller transmits a CAN frame to the VCC 
that reduces the bits to dominant edges, bit values, and 
bit type. When the “Protocol Multiplexer” receives an  
SOF Sync_Seg, it synchronizes the embedded protocol  
to the CAN bit timing. The time between the encoded  
Sync_Seg from the VCC is used for transmitting the  
second-protocol information. The symbol stream is sent  
to the ”Sig-nal Processing Unit” (SPU) and transmitted on 
the physical medium.

Figure 13: CAN frame 
(Source: Kvaser)
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Receiving modules process the signals in reverse order 
(see Figure 15). A symbol stream is received from the SPU 
and demultiplexed by the “Protocol Multiplexer”. The CAN 
symbols according to the RCP are fed to the VCC and the 
symbols of the second protocol to the second protocol han-
dler. The VCC recreates the CAN bits by decoding the re-
ceived Sync_Segs. A point-to-point connection between the 
CAN controller and the VCC (which is generating ghost edg-
es) ensures that the CAN controller and the VCB are in per-
fect synchronization. This being the case, the sample point 
can be moved as far as possible to the end of the bit, i.e.,  
the Phase_Seg 1 is one TQ and the Phase_Seg 2 two TQ 
long.

Embedding fake frames

Another method to embed a second protocol is to send 
a fake CAN frame. One CAN identifier is reserved for this 
purpose and known by the PMUX and the VCC. When the 
PMUX wants to transmit something from the second protocol, 
it starts the transmission as a CAN frame with the reserved  
CAN-Identifier and a DLC (data length code) that will create a 

Figure 14: Integrated protocol multiplexing bit embedding transmission (Source: Kvaser)

Figure 15: Receiving modules process the signals in reverse order (Source: Kvaser)

time slot until the EOF that can be occupied by second pro-
tocol bits.

All VCCs will receive the first part and transmit it  
to their respective CAN controller (bit by bit). If the fake frame  
wins the arbitration, the respective VCC will create a fake  
frame and send it to its CAN controller. The PMUX will use 
the time until EOF for transmission of the second-protocol  
bits. More than one CAN-Identifier can be reserved and used 
to distinguish frames of specific kinds and addresses and/or 
to identify a third or fourth protocol, etc.

Longer time slots for second  
protocol frames

Sometimes the control system uses just a fraction of 
the available bandwidth. One way to make a window for 
the second protocol is to set up several dummy frames. 
These dummy frames are sent back-to-back to the CAN 
controller. If the dummy frame has the CAN-Identifier 0, 
it will block the CAN controller from any attempt to trans-
mit a frame. During runtime of a control system, i.e. the 
CAN system, some frames require the highest priority  
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e.g., in catastrophic situations. The dummy frame should 
then have a lower priority. The VCC would then detect an 
attempt to transmit the alarm frame but too late for the 
PMUX to transmit it. The VCC then creates a bit fault to 
the CAN controller. The CAN controller will respond with 
an error frame and retransmission of the alarm frame. The 
PMUX will now get an SOF, abort the second protocol 
frame and continue transmitting the alarm frame.

Summary of the “Reduced  
CAN Protocol”

The RCP generates the position and values of the 
essential bit quanta in a CAN frame and the different  
frame structures from start of frame (SOF) to end of frame 
(EOF) according to the chosen CAN format for the actual 
system. 

When the CAN controller transmits, the VCC mirrors 
the TX signal to the RX connection and conveys the follow-
ing reduced CAN signals to the PMUX:
1. The Sync_Seg of every bit.
2. The bit value by one or more of the alternatives below
 a) modulating the Sync_Seg
 b) modulating the first TQ of the Prop_Seg
 c) last TQ of Phase_Seg 1 and first TQ of Pase_Seg 2
3. Encoded stuff bits
4. Encoded SOF
5. Encoded EOF

At reception, the PMUX transmits the CAN primitives 
according to the RCP to the VCC. The VCC converts the 
primitives to CAN bits on the go and feeds the signals 
to the CAN controller. The VCC also checks the bit flow 
according to the stuff bit rules. In case of a mismatch, it 
transmits an error flag both to the CAN controller and the 
PMUX.

Figure 19: Further possible enhancements (Source: 
Kvaser)
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Figure 16: Integrated protocol multiplexing fake frame 
embedding transmission (Source: Kvaser)

Figure 18: Integrated protocol time multiplexing (Source: 
Kvaser)

Figure 17: Integrated protocol multiplexing fake frame 
embedding reception (Source: Kvaser)

A further enhancement

Until now it has been assumed that the ECU has a CAN 
controller. This makes it easy to apply the invention as 
old ECUs can be used without any modification. For com-
pletely new designs, it could be advantageous to move the 
CAN controller to the transceiver unit. There are already 
many such designs both for Classical CAN and CAN FD, 
denoted as standalone CAN controllers. In this case, the 
transceiver unit will have two modes, a “CAN only mode” 
and a “CAN embedded mode.” In CAN only mode, the 
PMUX is bypassed and the signals according to the RCP 
are sent directly to the bus lines. In this way the kernel of 
the control system can be developed in a straight forward 
way using well proven CAN tools. As only the essential 
signals are transmitted on the CAN, detailed time analy-
sis of the communication can be made. In a later stage 
of the development, when other features are added to the 
communication, the CAN control part can be verified by 
analyzing the “Virtual CAN Bus” by examining the RCP sig-
nals from the PMUX. Other features can be added such as 
frame schedulers, system clocks, etc. (see Figure 19).    t
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