These concept vehicles are a look to the far future. But also vehicles for the next generation are exhibited. One highlight of the CES 2018 was the electric concept car by Rinspeed called Snap. The idea is simple: The concept vehicle comprises two parts. One part is the skateboard, which carries the durable mechanical and the fast-aging IT equipment. They will be recycled after a few years of intensive use once they have reached the end of their design life, while the much less stressed pod, the other part, is able to remain in service for much longer, before it also must be sent to recycling. This benefits the environment, because it plays a significant role in conserving natural resources.

Combing technology and creating new features

Frank Rinderknecht, head of the Rinspeed company, has already developed 23 concept cars. The name Snap really says all: everything fits together and can be snapped together. The concept car from Rinspeed was again designed at the Swiss company 4erC (Switzerland) and technically executed at Esoro (Switzerland). The electric vehicle – as always when Rinderknecht is at work – is full of technical and visual finesse, contributed by a worldwide network of companies. The two steering axles along with the integrated electric powertrain came from ZF. They allow the Snap to turn practically on a small coin and produce no emissions in urban traffic. Optionally, there is a ‘personal assistant’ in form of an autonomous, intelligent robot to accompany the occupants. It will also be happy to help with running errands, carrying purchases, or handle other tedious tasks.

The Snap, an SAE level-5 automated driving vehicle, uses a lot of electronic technology from third parties: ZF has contributed its ProAI control box (see insert “Artificial intelligence computing platform”) as well as radars and cameras, and NXP supplied its Bluebox and several semiconductors, for example. The domain controller architecture has been developed by NXP. It uses different communication technologies including CAN.

Lidar sensors by Ibeo, owned partly by ZF, ensure that obstacles in the road are detected by means of real-time measurements of the light reflections. The products are 3-D solid-state sensors without rotating mirrors. Gentix delivered...
First Class Solutions
for Your CAN and CAN FD Projects

Your Universal Tool Chain

Increase efficiency of your projects with the universal tool chain from Vector:

- Tools for testing, flashing and calibrating ECUs
- Flexible network interfaces
- New all-in-one network disturbance interface
- High performance oscilloscope for bit accurate signal analysis
- Easy to configure AUTOSAR basic software
- Worldwide engineering services and trainings

Information and downloads: www.can-solutions.com

More CAN power by Vector: benefit from over 25 years of networking experience.
what will define the driving experience is the AI. The complexity of autonomous driving, the complexity of the software of future cars is incredible. It starts with, of course, building a brand new type of processor we call the Drive Xavier, an autonomous machine processor that is able to do deep learning, perception, has the ability to do parallel computing and also computer vision and high performance computing at very, very energy-efficient levels.”

Qi Lu, Group President and COO of Baidu: “Apollo is an example of ‘China Speed’, demonstrating the rapid pace of China’s innovations and development in the global autonomous driving industry. Artificial Intelligence and innovation are borderless. We’re facing a historic moment with immense opportunities for people around the world, which requires big countries and great enterprises, including China and Baidu, to lead and explore together. We are very pleased to be at the center of this large-scale innovation and stand together with each partner at the forefront of this momentous time.”

Aido Toyoda, president of Toyota Motor: “The automobile industry is clearly amidst its most dramatic period of change as technologies like electrification, connected, and automated driving are making significant progress. Toyota remains committed to making ever better cars. Just as important, we are developing mobility solutions to help everyone enjoy their lives, and we are doing our part to create an ever-better society for the next 100 years and beyond. This announcement marks a major step forward in our evolution towards sustainable mobility, demonstrating our continued expansion beyond traditional cars and trucks to the creation of new values including services for customers.”

Research platform for automated driving

Toyota introduced in Las Vegas its “Platform 3.0”, which is able to fuse many sensors. The Japanese carmaker demonstrated it in a special Lexus LS 600hL. The number of connected sensors was not disclosed, but it was said that the car was equipped with more than fifteen. This included four lidar (light imaging detection and ranging) sensor systems by Luminar with a 200m range tracking the forward direction. They enable to detect objects in the environment including difficult-to-see dark objects. The connected sensors enabled a 360-degree perimeter. Additional shorter-range lidar sensors are positioned low on all four sides of the vehicle—one in each front quarter panel and one each on the front and rear bumpers. These can detect low-level and smaller objects near the car like children and debris in the roadway. Production of the platform starts this spring. It has been developed in the Toyota Research Institute (TRI) located in California. Of course, the platform provides also CAN connectivity to communicate with the other ECUs (electronic control units).

Qi Lu, Group President and COO of Baidu: “Apollo is an example of ‘China Speed’, demonstrating the rapid pace of China’s innovations and development in the global autonomous driving industry. Artificial Intelligence and innovation are borderless. We’re facing a historic moment with immense opportunities for people around the world, which requires big countries and great enterprises, including China and Baidu, to lead and explore together. We are very pleased to be at the center of this large-scale innovation and stand together with each partner at the forefront of this momentous time.”

Qi Lu, Group President and COO of Baidu: “Apollo is an example of ‘China Speed’, demonstrating the rapid pace of China’s innovations and development in the global autonomous driving industry. Artificial Intelligence and innovation are borderless. We’re facing a historic moment with immense opportunities for people around the world, which requires big countries and great enterprises, including China and Baidu, to lead and explore together. We are very pleased to be at the center of this large-scale innovation and stand together with each partner at the forefront of this momentous time.”

Aido Toyoda, president of Toyota Motor: “The automobile industry is clearly amidst its most dramatic period of change as technologies like electrification, connected, and automated driving are making significant progress. Toyota remains committed to making ever better cars. Just as important, we are developing mobility solutions to help everyone enjoy their lives, and we are doing our part to create an ever-better society for the next 100 years and beyond. This announcement marks a major step forward in our evolution towards sustainable mobility, demonstrating our continued expansion beyond traditional cars and trucks to the creation of new values including services for customers.”

Research platform for automated driving

Toyota introduced in Las Vegas its “Platform 3.0”, which is able to fuse many sensors. The Japanese carmaker demonstrated it in a special Lexus LS 600hL. The number of connected sensors was not disclosed, but it was said that the car was equipped with more than fifteen. This included four lidar (light imaging detection and ranging) sensor systems by Luminar with a 200m range tracking the forward direction. They enable to detect objects in the environment including difficult-to-see dark objects. The connected sensors enabled a 360-degree perimeter. Additional shorter-range lidar sensors are positioned low on all four sides of the vehicle—one in each front quarter panel and one each on the front and rear bumpers. These can detect low-level and smaller objects near the car like children and debris in the roadway. Production of the platform starts this spring. It has been developed in the Toyota Research Institute (TRI) located in California. Of course, the platform provides also CAN connectivity to communicate with the other ECUs (electronic control units).

Qi Lu, Group President and COO of Baidu: “Apollo is an example of ‘China Speed’, demonstrating the rapid pace of China’s innovations and development in the global autonomous driving industry. Artificial Intelligence and innovation are borderless. We’re facing a historic moment with immense opportunities for people around the world, which requires big countries and great enterprises, including China and Baidu, to lead and explore together. We are very pleased to be at the center of this large-scale innovation and stand together with each partner at the forefront of this momentous time.”

Aido Toyoda, president of Toyota Motor: “The automobile industry is clearly amidst its most dramatic period of change as technologies like electrification, connected, and automated driving are making significant progress. Toyota remains committed to making ever better cars. Just as important, we are developing mobility solutions to help everyone enjoy their lives, and we are doing our part to create an ever-better society for the next 100 years and beyond. This announcement marks a major step forward in our evolution towards sustainable mobility, demonstrating our continued expansion beyond traditional cars and trucks to the creation of new values including services for customers.”

Research platform for automated driving

Toyota introduced in Las Vegas its “Platform 3.0”, which is able to fuse many sensors. The Japanese carmaker demonstrated it in a special Lexus LS 600hL. The number of connected sensors was not disclosed, but it was said that the car was equipped with more than fifteen. This included four lidar (light imaging detection and ranging) sensor systems by Luminar with a 200m range tracking the forward direction. They enable to detect objects in the environment including difficult-to-see dark objects. The connected sensors enabled a 360-degree perimeter. Additional shorter-range lidar sensors are positioned low on all four sides of the vehicle—one in each front quarter panel and one each on the front and rear bumpers. These can detect low-level and smaller objects near the car like children and debris in the roadway. Production of the platform starts this spring. It has been developed in the Toyota Research Institute (TRI) located in California. Of course, the platform provides also CAN connectivity to communicate with the other ECUs (electronic control units).

Qi Lu, Group President and COO of Baidu: “Apollo is an example of ‘China Speed’, demonstrating the rapid pace of China’s innovations and development in the global autonomous driving industry. Artificial Intelligence and innovation are borderless. We’re facing a historic moment with immense opportunities for people around the world, which requires big countries and great enterprises, including China and Baidu, to lead and explore together. We are very pleased to be at the center of this large-scale innovation and stand together with each partner at the forefront of this momentous time.”

Aido Toyoda, president of Toyota Motor: “The automobile industry is clearly amidst its most dramatic period of change as technologies like electrification, connected, and automated driving are making significant progress. Toyota remains committed to making ever better cars. Just as important, we are developing mobility solutions to help everyone enjoy their lives, and we are doing our part to create an ever-better society for the next 100 years and beyond. This announcement marks a major step forward in our evolution towards sustainable mobility, demonstrating our continued expansion beyond traditional cars and trucks to the creation of new values including services for customers.”

Research platform for automated driving

Toyota introduced in Las Vegas its “Platform 3.0”, which is able to fuse many sensors. The Japanese carmaker demonstrated it in a special Lexus LS 600hL. The number of connected sensors was not disclosed, but it was said that the car was equipped with more than fifteen. This included four lidar (light imaging detection and ranging) sensor systems by Luminar with a 200m range tracking the forward direction. They enable to detect objects in the environment including difficult-to-see dark objects. The connected sensors enabled a 360-degree perimeter. Additional shorter-range lidar sensors are positioned low on all four sides of the vehicle—one in each front quarter panel and one each on the front and rear bumpers. These can detect low-level and smaller objects near the car like children and debris in the roadway. Production of the platform starts this spring. It has been developed in the Toyota Research Institute (TRI) located in California. Of course, the platform provides also CAN connectivity to communicate with the other ECUs (electronic control units).

Qi Lu, Group President and COO of Baidu: “Apollo is an example of ‘China Speed’, demonstrating the rapid pace of China’s innovations and development in the global autonomous driving industry. Artificial Intelligence and innovation are borderless. We’re facing a historic moment with immense opportunities for people around the world, which requires big countries and great enterprises, including China and Baidu, to lead and explore together. We are very pleased to be at the center of this large-scale innovation and stand together with each partner at the forefront of this momentous time.”

Aido Toyoda, president of Toyota Motor: “The automobile industry is clearly amidst its most dramatic period of change as technologies like electrification, connected, and automated driving are making significant progress. Toyota remains committed to making ever better cars. Just as important, we are developing mobility solutions to help everyone enjoy their lives, and we are doing our part to create an ever-better society for the next 100 years and beyond. This announcement marks a major step forward in our evolution towards sustainable mobility, demonstrating our continued expansion beyond traditional cars and trucks to the creation of new values including services for customers.”

Research platform for automated driving

Toyota introduced in Las Vegas its “Platform 3.0”, which is able to fuse many sensors. The Japanese carmaker demonstrated it in a special Lexus LS 600hL. The number of connected sensors was not disclosed, but it was said that the car was equipped with more than fifteen. This included four lidar (light imaging detection and ranging) sensor systems by Luminar with a 200m range tracking the forward direction. They enable to detect objects in the environment including difficult-to-see dark objects. The connected sensors enabled a 360-degree perimeter. Additional shorter-range lidar sensors are positioned low on all four sides of the vehicle—one in each front quarter panel and one each on the front and rear bumpers. These can detect low-level and smaller objects near the car like children and debris in the roadway. Production of the platform starts this spring. It has been developed in the Toyota Research Institute (TRI) located in California. Of course, the platform provides also CAN connectivity to communicate with the other ECUs (electronic control units).
EVERYONE CAN

Introducing the new ValueCAN 4 family of tools.

- Great value at a great price - starting at less than €200
- Options for CAN FD, CAN, Ethernet, and LIN
- Rugged aluminum case and heavy duty strain relief
- Sealed body and connector
- Small size, easy to keep with your laptop
- Real-time acceleration, bus isolation, high-speed flashing, standalone operation, USB-powered

Read more: www.intrepidcs.com/vcan4

INTREPID CONTROL SYSTEMS GMBH
USA UK Germany Japan Korea China India Australia
+49 (0)721 6633703 -4 icsgermany@intrepidcs.com
user’s needs, such as ride sharing, hotel room, and retail shopping specifications. Toyota president, Akio Toyoda, mentioned in a press conference Apple, Facebook, and Google as competitors for its mobility initiative, but not the other OEMs (original equipment manufacturers). He said: "My goal is to transition Toyota from an automobile company to a mobility company."

Vehicle information is gathered from the Data Communication Module (DCM) fitted to the e-Palette concept and accumulated in the Toyota Big Data Center (TBDC) through a global communication platform. DCMs are currently different depending on the region and country, but will be standardized by 2019. Besides the telematics interfaces, the DCM also provides connectivity to the in-vehicle networks including CAN-based sub-systems. Already last year, Toyota submitted a patent application (US 20170208074A1), which describes a method to detect unauthorized access attempts by device using the DCM’s CAN interfaces (e.g. the OBDII interface).

There is already competition to the e-Palette approach: The Chinese bus maker King Long will operate self-driving L4 shuttles, e-Palette look-alikes, using Baidu’s Apollo platform (see also page 14).

Production-ready ADAS solutions

At CES 2018, Renesas demonstrated ADAS (advanced driver assistance system) solutions based on its R-Car H3 SoC (system-on-chip) featuring among other connectivity options two CAN FD on-chip modules. The Dodge Ram 1500 truck used the SoC in its cockpit. Also the Lincoln MKZ model implemented the chip, which processed data from nine cameras to detect other vehicles, pedestrians, lane markings, stop signs, speed-limit signs, traffic lights, and parking spaces. After processing all of this information, the results are shown on the dashboard or leads to commands transmitted via CAN, for example, to the related ECUs (electronic control units) to perform acceleration, deceleration, steering, etc. The SoC was also used in the exhibited Cadillac SRX for the 3-D surround view.
Autonomous driving is possible now

Google and others do it since some years. In dedicated areas, self-driving prototypes are driving on normal roads. Of course, a human driver has to sit behind the steering wheel – so-to-say just in case that electronics fail. In Las Vegas, Lyft provided together with Aptiv the largest fleet of robotic cars, BMW 5-series models (see also page 12).

To keep the still growing megacities clean, it is necessary to power the cars electrically. Of course, not all of the electrical energy generation will be green and CO² neutral. This “dirty” generation of electrical energy happens in remote areas, not visible for those living in urban areas.

Many of the in Las Vegas launched vehicles were electric-powered cars. Genovation presented at CES its GXE Corvette sports car, which achieved a record speed of 330 km/h. The development started four years ago. Just 75 units will be produced. The price is US-$ 75000. The e-car is based on the C7 Corvette and retains all the stock safety systems and onboard LAN communications but adds a dedicated CAN network to connect the eleven control modules and the instrumentation, which includes a Volvo-like vertical touchscreen. The CAN network is fed just enough information to trick it into thinking there’s a perfectly functioning powertrain onboard.

In particular, the Chinese government forces foreign OEMs to manufacture e-cars. In Las Vegas, the Chinese start-up Byton deputed an all-electric SUV (service utility vehicle). The company plans to roll-out the US-$ 45000 SUV already next year in China. Two models will be offered, a 268-hp rear-wheel drive version and a 469-hp dual-motor all-wheel drive version.

E-cars keep the city clean

Look under the hood:
The GXE Corvette is a battery-powered car reaching 250 km, when not running at the highest speed of 330 km/h (Photo: Genovation)

Author
Holger Zeltwanger
CAN Newsletter
pr@can-cia.org
www.can-newsletter.org