For safety-related applications, motion control systems must be able to trust the position feedback that they receive from encoders and other sensors. If a sensor malfunctions, the controller must be able to quickly recognize the fault and take appropriate action. Device failure can be detected more readily if there are redundant feedback channels in the control system. If the control system receives similar signals from two different sensors set up to measure the same mechanical property, it can reasonably assume that both are functioning properly. Discrepancies between the readings would signal a fault.

Enhanced safety through redundant feedback

For safety-related equipment, the motion control system should operate in a fail-safe manner. That is, the system should be able to detect faults in the encoders and other sensors that provide position feedback and take appropriate actions to bring the machinery to a safe condition.

A widely used strategy for ensuring that information from the sensor is trustworthy is to build redundancy into the control feedback loops. For each safety-related action of the machine (e.g. rotation of an elevator’s cable drum, movement of a robot’s arm, or extension of a crane’s boom), two or more semi-independent measurement systems would be installed to monitor the same mechanical motion. This enables the control system to detect sensor errors and avoid dangerous loss-of-control situations.

Duplicating each element of the feedback loop by adding extra encoders and communication cables would achieve this goal, but at the price of extra expense and increased mechanical complexity. The additional devices will also take up valuable space in the complex machinery.

Safety-certified encoders

An alternative is to use special safety-certified encoders. This type of encoder has two measurement modules installed in a single housing, sharing the same input shaft. A signal-processing chip compares outputs from the two modules and – for most devices of this type – shuts down measurements and issues an alarm signal if a discrepancy is detected. Redundancy, in this case, is built into the encoder. Encoders with these characteristics can be designed to comply with safety integrity level (SIL) or performance level (PL) standards (see text box).

An advantage of safety-certified encoders is that they can simplify the development of safety-critical systems. The control system will receive either reliable position data, or a clear signal that the encoder has detected a fault. However, this approach can be inflexible when handling failure situations: if the sensors simply switch off, the control system has little guidance as to how to transition the machinery to a safe state.

Certified devices can be significantly more expensive than ‘ordinary’ encoders mostly because of the certification cost by an independent testing laboratory. And, while these devices eliminate the need for doubling the number
of encoders installed, they are only available in a limited number of mechanical configurations. Machine builders may be obliged to modify their designs to accommodate these sensors.

Diverse-redundant encoders

This type of encoder introduced by Posital provides a middle ground between complex duplicate encoder installations and expensive safety-certified devices. Diverse-redundant encoders have two measurement modules built into a single housing, sharing a common shaft. However, unlike their SIL-or PL-certified counterparts, diverse-redundant encoders do not compare the output from the two measurement channels. Instead, both output signals are transmitted directly to the controller (PLC) to be evaluated there. This arrangement simplifies the machine layout, since there is only one device to install for each control loop. And, since these devices are not formally certified, they are less expensive than their SIL-rated counterparts. They are also available in a greater variety of mechanical configurations.

An important feature of diverse-redundant encoders is that two different measurement technologies – optical and magnetic – are used for the two measurement modules. This improves diagnostic coverage and reduces the possibility of common-cause failures. Both measurement systems are based on well-established encoder technologies designed to operate reliably over a wide range of temperatures. As well, both measurement channels feature battery-free multi-turn rotation counters for zero-maintenance operations. Diverse-redundant encoders are available with a wide range of mechanical options that include aluminum or zinc-coated steel housings, environmental protection up to IP66/IP67, multiple connector types and a variety of shaft and flange designs.

Diverse-redundant encoders support CANopen communication protocols, with J1939 connectivity under development. The CAN controller would “see” two separate devices, measuring the same rotary motion. The controller is responsible for comparing the measurements and deciding whether they are reliable.

Is device certification a must?

Does the lack of device certification put an extra burden on machine builders to prove the safety of their products? The answer depends on the complexity of the design. Even if
certified devices are used in the design, certification of the complete machine requires an end-to-end assessment of the design, including the way in which the control system handles the device failure. Shifting responsibility for fault detection from the device to the controller may require only a minor increase in programming effort.

ISO 13849 allows the use of non-certified redundant devices in safety applications, provided there is an end-to-end assessment of the design. By making the controller responsible for the verification of the two measuring channels, instead of the sensor, the designer has more flexibility in responding to the requirements of the application. If it is possible to determine which channel is faulty through a plausibility check, then the machine could be transitioned to a restricted operational mode, relying on information from the surviving encoder. If an impact analysis permits, the system can be kept running — possibly with manual override — until the faulty devices are replaced.

Which approach suits for my application?

For simple systems with few motion control feedback loops, the use of duplicate, redundant sensors can be a cost-effective choice.

For on-off or low-volume products developed under tight time constraints, the convenience of working with SIL- or PL-certified encoders (reduced development times, less safety knowledge required) might outweigh the extra cost and limited availability of these devices. For many projects, diverse-redundant encoders can provide...
The new PCAN-GPS FD from PEAK-System is a programmable sensor module for position and orientation determination with CAN FD connection. It has a satellite receiver, a magnetic field sensor, an accelerometer, and a gyroscope. Incoming sensor data is processed by the NXP microcontroller LPC54618 and then transmitted via CAN or CAN FD.

The behavior of the PCAN-GPS FD can be programmed freely for specific applications. The firmware is created using the included development package with GNU compiler for C and C++ and is then transferred to the module via CAN. Various programming examples facilitate the implementation of own solutions.

On delivery, the PCAN-GPS FD is provided with a standard firmware that transmits the raw data of the sensors periodically on the CAN bus.

Specifications
- High-speed CAN connection (ISO 11898-2)
- Compiles with CAN specifications 2.0 A/B and FD
- CAN FD bit rates for the data field (64 bytes max.) from 40 kbit/s up to 10 Mbit/s
- CAN bit rates from 40 kbit/s up to 1 Mbit/s
- NXP TJA1043 CAN transceiver
- CAN termination can be activated through solder jumpers
- Wake-up by CAN bus or by separate input
- Receiver for navigation satellites u-blox MAX-M10S
- Supported navigation and supplementary systems: GPS, Galileo, BeiDou, GLONASS, SBAS, and QZSS
- Simultaneous reception of 3 navigation systems
- 3.3 V supply of active GPS antennas
- NXP LPC54618 microcontroller with Arm® Cortex® M4 core
- Electronic three-axis magnetic field sensor ST IIS2MDC
- Gyroscope and three-axis accelerometer ST ISM330DLC
- 8 MByte QSPI flash
- 3 digital I/Os, each usable as input (High-active) or output with Low-side switch
- LEDs for status signaling
- Connection via a 10-pole terminal strip (Phoenix)
- Voltage supply from 8 to 32 V
- Button cell for preserving the RTC and the GPS data to shorten the TTFF (Time To First Fix)
- Extended operating temperature range from -40 to +85 °C (with exception of the button cell)
- New firmware can be uploaded via a CAN interface

The PCAN-GPS FD is expected to be available at the beginning of Q4 2023.
a best-of-both-worlds solution. There is only one device to mount on the machine, reducing complexity and space requirements. Meanwhile, the two independent measurement channels provide a sound basis for building machines that can be certified to PL d, Cat. 3, according to ISO 13849-1.

With duplicate feedback loops or diverse-redundant encoders, the control system might be able to use other system knowledge to make a reasonable assessment as to which of the redundant measurement system is malfunctioning and whether the surviving system can be relied on to provide useful position data. In this case, the designer might be able to implement a restricted operating mode to extend the availability of the machine for a limited time. In any case, replacement of the defective device would be an urgent priority.

PC/CAN INTERFACES
Easy CAN and CAN FD connection for your application

- Interfaces for configuration, analyzing and control applications as well as for the Ixxat tool suite
- All PC interface standards supported with one uniform driver – easy exchange without programming!
- Drivers (32/64 bit) for Windows 7/8/10/11 and Linux
- API for CANopen